
第一章 证明(二) 1. 你能证明它们吗(二) 河南省郑州八中 刘正峰 王 蕊 一、学生知识状况分析 在八年级下册第六章《证明(一)》,学生已经感受了证明的必要性,并通过平行线有关命题的证明过程,习得了一些基本的证明方法和基本规范,积累了一定的证明经验;在七年级下,学生也已经探索得到了有关三角形全等和等腰三角形的有关命题;而前一课时,学生刚刚证明了等腰三角形的性质,这为本课时拓展等腰三角形的性质、研究等要三角形的判定定理都做了很好的铺垫。 二、教学任务分析 本节将利用前一课时所证明的等腰三角形的性质定理,进一步研究等腰三角形的一些特殊性质,以及等腰三角形的判定定理,前者是性质定理的直接运用与拓广,后者则是前者的逆命题,可以发展学生的逆向思维能力,同时后者的证明过程中,需要借助反证法,因而反证法的学习与运用也成为本课时的教学任务之一,为此,确定本节课的教学目标如下: 1.知识目标: ①探索———发现———猜想———证明等腰三角形中相等的线段,证明等腰三角形的判定定理,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性; ②初步了解反证法的含义,并能利用反证法证明简单的命题; 2.能力目标: ①经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力; ②在命题的变式中,发展学生提出问题的能力,拓展命题的能力,从而提高学生的学习能力和思维能力,提高学生学习的主体性; ③在图形的观察中,揭示等腰三角形的本质:对称性,发展学生的几何直觉; ④引导学生体会蕴含在问题解决过程中的思想方法,如归纳、类比、反证法等。 3.情感与价值观要求 ①鼓励学生积极参与数学活动,激发学生的好奇心和求知欲. ②体验数学活动中的探索与创造,感受数学的严谨性. 4.教学重、难点 重点:经历“探索———发现一一猜想———证明”的过程,能够用综合法证明有关三角形和等腰三角形的一些结论.结合实例体会反证法的含义. 难点:①由一般结论归纳出特殊结论. ②探求证明思路,特别是反证法的思路含义. 三、教学过程分析 本节课设计了八个教学环节:第一环节:提出问题,引入新课;第二环节:自主探究;第三环节:经典例题 变式练习;第四环节:逆向思考,导出反证法;第五环节:适时提问 导出反证法;第六环节:及时巩固 随堂练习;第七环节:.探讨收获 课时小结;第八环节:布置作业。 第一环节:提出问题,引入新课 活动内容:在回忆上节课等腰三角形性质的基础上,提出问题: 在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗 你能证明你的结论吗 活动目的:回顾性质,既为后续研究判定提供了基础;同时,直接提出新的问题,过渡自然,引入本课研究内容,而新的问题是原有性质的一个自然拓广,有助于提高学生提出问题的能力。 第二环节:自主探究 活动内容:在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明。 活动目的:让学生再次经历“探索———发现———猜想———证明”的过程,进一步体会证明的必要性,并进行证明,从中进一步体会证明过程,感受证明方法的多样性。 活动效果与注意事项:活动中,教师应注意给予适度的引导,如可以渐次提出问题: 你可能得到哪些相等的线段? 你如何验证你的猜测? 你能证明你的猜测吗?试作图,写出已知、求证和证明过程; 还可以有哪些证明方法? 通过学生的自主探究和同伴的交流,学生一般都能在直观猜测、测量验证的基础上探究出: 等腰三角形两个底角的平分线相等; 等腰三角形腰上的高相等; 等腰三角形腰上的中线相等. 并对这些命题给予 ... ...
~~ 您好,已阅读到文档的结尾了 ~~