ID: 19980441

4.2 提取公因式法 课件(共23张PPT)

日期:2025-11-26 科目:数学 类型:初中课件 查看:13次 大小:1047611B 来源:二一课件通
预览图 1/9
提取,公因式,课件,23张,PPT
  • cover
(课件网) 4.2 提取公因式法 浙教版 七年级下册 教学目标 1.会用数学的眼光观察现实世界:学生能够抽象实际生活的问题中的数量关系,概括提公因式法的实际意义,并运用提公因式法解决现实中的应用问题. 2.会用数学的思维思考现实世界:在对提公因式法进行因式分解的探究以及在实际生活中的应用,建立数学思维的思考模式. 3.会用数学的语言表示现实世界:通过提公因式法进行因式分解的学习,在经历猜想、验证、归纳的学习过程中,体会归纳的数学思想方法,逐步养成用数学语言表达与交流的习惯,感悟数据的意义与价值。 复习导入 1.因式分解: 一般地,把一个多项式化成几个整式的积的形式,叫做因式分解,有时我们也把这一过程叫做分解因式。 2.因式分解与整式乘法的关系: 互逆运算 即:多项式 整式的积 你能试着将多项式pa+pb+pc分解因式吗? x +x=x x+1 pa+pb+pc=p a+b+c 观察以上两个多项式,它们有什么共同特点? 公因式:一般地,一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式. 它们的各项都有一个公共的因式 新知探究 pa+pb+pc=p a+b+c 公因式p与 a+b+c 的乘积 提取公因式法: 如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行因式分解.这种分解因式的方法,叫做提取公因式法. 新知探究 如何确定应提取的公因式? 3ax2y+6x3yz 3ax2y=3 a x x y 6x3yz=2 3 x x x y z 3ax2y+6x3yz=3x2y(a+2xz) 公因式 3x2y 新知探究 如何确定应提取的公因式? 1.定系数:公因式的系数是多项式各项系数的最大公约数. 2.定字母:字母取多项式各项中都含有的相同字母. 3.定指数:相同字母的指数取各项中最小的一个,即字母的最低次数. 新知探究 例1 把下列各式分解因式: (1) 2x3+6x2 ; (2) 3pq3+15p3q; (3) -4x2+8ax+2x ;(4) -3ab+6abx-9aby. 解:(1) 2x3+6x2=2x2(x+3). (2) 3pq3+15p3q=3pq(q2+5p2). (3)-4x2+8ax+2x=-2x(2x-4a-1). (4)-3ab+6abx-9aby=-3ab(1-2x+3y). 当多项式第一项的系数是负数时,可以先提出负号,但要注意括号里的各项都要变号。 新知探究 提取公因式法的一般步骤: (1)确定应提取的公因式; (2)用公因式去除这个多项式,所得的商作为另一个因式; (3)把多项式写成这两个因式的积的形式. 注意:提取公因式后,应使多项式余下的各项不再含有公因式. 新知探究 例2 把2(a-b)2-a+b分解因式. 解: 分析:把-a+b变形成-(a-b),原多项式就转化为2(a-b)2-(a-b).若把(a-b)看做整体,原多项式就可以提取公因式(a-b). 新知探究 新知探究 添括号法则: 括号前面是“+”号,括到括号里的各项都不变号; 括号前面是“-”号,括到括号里的各项都变号. 在求解例2时,我们把-a+b加上括号,变形成-(a-b),而不改变-a+b.的值,这种方法叫做添括号.--般地,添括号的法则如下; 新知探究 提公因式法分解因式的注意点: (1)当多项式的某项恰好是公因式本身时,提取该项之后应保留其系数1; (2)提取公因式后,若另一因式化简后又有公因式,应再次提取; (3)可用单项式乘多项式的法则检验结果是否正确. 课堂练习 1. 确定下列多项式的公因式,并分解因式. (1)ax+b (2)3mx-6nx2 (3)4a2b+10ab-2ab2 解:(1)没公因式,原式=ax+b (2)公因式是3x,原式=3x(m-2nx) (3)公因式是2ab,原式=2ab(2a+5-b) 课堂练习 2. 添括号(填空): (1)1-2x=+( ) (2)-x-2=-( ) (3)-x2-2x+1=-( ) 1-2x x+2 x2 + 2x -1 课堂练习 3. 下面的分解因式对吗?如果不对,应怎样该正? (1)2x2+3x3+x=x(2x+3x2) (2)3a2c-6a3c=3a2(c-2ac) (3)-2s3+4s2-6s=-s(2s2+4s-6) (4)-4a2b+6ab2-8a=-2ab(2a-3b)-8a 作业布置 1.多项式x-1和多项 ... ...

~~ 您好,已阅读到文档的结尾了 ~~