ID: 20103481

第7章第05讲多边形的内角和与外角和 同步学与练(含解析) 2023-2024学年数学苏科版七年级下册

日期:2025-11-25 科目:数学 类型:初中试卷 查看:17次 大小:3673583B 来源:二一课件通
预览图 1/5
七年级,苏科版,数学,学年,2023-2024,解析
  • cover
第05讲 多边形的内角和与外角和 1.探索并了解“三角形三个内角之和等于180°”; 2.经历举例、操作(画图、度量、拼图)、观察、归纳、说理、交流等数学活动,提升学生有条理的表达能力. 3.掌握多边形内角和的计算方法,并能用内角和知识解决有关多边形的计算问题;通过多边形内角和公式的推导,增强探索与归纳的能力,初步掌握数学说理能力; 4.经历探索多边形内角和的过程,多角度,全方位地考虑问题,初步掌握简单数学结论的探究与运用的方法; 5.经历数学知识的形成过程,体验转化、类比等数学思想方法的应用,体验猜想的结论得到证实的成就感.. 一.三角形内角和定理 (1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°. (2)三角形内角和定理:三角形内角和是180°. (3)三角形内角和定理的证明 证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线. (4)三角形内角和定理的应用 主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角. 二.三角形的外角性质 (1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角. 三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对. (2)三角形的外角性质: ①三角形的外角和为360°. ②三角形的一个外角等于和它不相邻的两个内角的和. ③三角形的一个外角大于和它不相邻的任何一个内角. (3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去. (4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角. 三.多边形 (1)多边形的概念:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. (2)多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. (3)正多边形的概念:各个角都相等,各条边都相等的多边形叫做正多边形. (4)多边形可分为凸多边形和凹多边形,辨别凸多边形可用两种方法:①画多边形任何一边所在的直线整个多边形都在此直线的同一侧.②每个内角的度数均小于180°,通常所说的多边形指凸多边形. (5)重心的定义:平面图形中,多边形的重心是当支撑或悬挂时图形能在水平面处于平稳状态,此时的支撑点或者悬挂点叫做平衡点,或重心. 常见图形的重心(1)线段:中点(2)平行四边形:对角线的交点(3)三角形:三边中线的交点(4)任意多边形. 四.多边形的对角线 (1)多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. (2)n边形从一个顶点出发可引出(n﹣3)条对角线.从n个顶点出发引出(n﹣3)条,而每条重复一次,所以n边形对角线的总条数为:n(n﹣3)2(n≥3,且n为整数) (3)对多边形对角线条数公:n(n﹣3)2的理解:n边形的一个顶点不能与它本身及左右两个邻点相连成对角线,故可连出(n﹣3)条.共有n个顶点,应为n(n﹣3)条,这样算出的数,正好多出了一倍,所以再除以2. (4)利用以上公式,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n. 五.多边形内角与外角 (1)多边形内角和定理:(n﹣2) 180° (n≥3且n为整数) 此公式推导的基本方法是从n边形的一个顶点出发引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形,这(n﹣2)个三角形的所有内角之和正好是n边形的内角和.除此方法之和还有其他几种方法,但这些方法的基本思想是一样的.即将多边形转化为三角形,这也是研究多边形问题常 ... ...

~~ 您好,已阅读到文档的结尾了 ~~