初中数学资料 实际问题与二次函数—知识讲解(提高) 要点一、列二次函数解应用题 列二次函数解应用题与列整式方程解应用题的思路和方法是一致的,不同的是,学习了二次函数后,表示量与量的关系的代数式是含有两个变量的等式.对于应用题要注意以下步骤: (1)审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系). (2)设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确. (3)列函数表达式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数. (4)按题目要求,结合二次函数的性质解答相应的问题。 (5)检验所得解是否符合实际:即是否为所提问题的答案. (6)写出答案. 要点诠释: 常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式. 要点二、建立二次函数模型求解实际问题 一般步骤:(1)恰当地建立直角坐标系;(2)将已知条件转化为点的坐标;(3)合理地设出所求函数关系式;(4)代入已知条件或点的坐标,求出关系式;(5)利用关系式求解问题. 要点诠释:(1)利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 对于本节的学习,应由低到高处理好如下三个方面的问题: ①首先必须了解二次函数的基本性质; ②学会从实际问题中建立二次函数的模型; ③借助二次函数的性质来解决实际问题. 【典型例题】 类型一、利用二次函数求实际问题中的最大(小)值 1. 凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元. (1)求一次至少购买多少只计算器,才能以最低价购买? (2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围; (3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少? 【思路点拨】 (1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到20﹣0.1(x﹣10)=16,解方程即可求解; (2)由于根据(1)得到x≤50,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式; (3)首先把函数变为y=﹣0.1x2+9x=﹣0.1(x﹣45)2+202.5,然后可以得到函数的增减性,再结合已知条件即可解决问题. 【答案与解析】 解:(1)设一次购买x只, 则20﹣0.1(x﹣10)=16, 解得:x=50. 答:一次至少买50只,才能以最低价购买; (2)当10<x≤50时, y=[20﹣0.1(x﹣10)﹣12]x=﹣0.1x2+9x, 当x>50时,y=(16﹣12)x=4x; 综上所述:y=; (3)y=﹣0.1x2+9x=﹣0.1(x﹣45)2+202.5, ①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大. ②当45<x≤50时,y随x的增大而减小,即当卖的只数越多时,利润变小. 且当x=46时,y1=202.4, 当x=50时,y2=200. y1>y2. 即出现了卖46只赚的钱比卖50 ... ...
~~ 您好,已阅读到文档的结尾了 ~~