
中小学教育资源及组卷应用平台 计数原理与概率统计 一、单选题 1.(2024·全国)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(均在之间,单位:kg)并部分整理下表 亩产量 [900,950) [950,1000) [1000,1050) [1100,1150) [1150,1200) 频数 6 12 18 24 10 据表中数据,结论中正确的是( ) A.100块稻田亩产量的中位数小于1050kg B.100块稻田中亩产量低于1100kg的稻田所占比例超过80% C.100块稻田亩产量的极差介于200kg至300kg之间 D.100块稻田亩产量的平均值介于900kg至1000kg之间 2.(2024·全国)甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A. B. C. D. 3.(2024·北京)的二项展开式中的系数为( ) A.15 B.6 C. D. 4.(2024·天津)下列图中,相关性系数最大的是( ) A. B. C. D. 二、多选题 5.(2024·全国)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入服从正态分布,假设推动出口后的亩收入服从正态分布,则( )(若随机变量Z服从正态分布,) A. B. C. D. 三、填空题 6.(2024·全国)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为 . 7.(2024·全国)在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 . 8.(2024·全国)的展开式中,各项系数的最大值是 . 9.(2024·全国)有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记为前两次取出的球上数字的平均值,为取出的三个球上数字的平均值,则与差的绝对值不超过的概率是 . 10.(2024·天津)五种活动,甲、乙都要选择三个活动参加.(1)甲选到的概率为 ;已知乙选了活动,他再选择活动的概率为 . 11.(2024·上海)在的二项展开式中,若各项系数和为32,则项的系数为 . 12.(2024·上海)某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 . 13.(2024·上海)设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 . 四、解答题 14.(2024·全国)设m为正整数,数列是公差不为0的等差数列,若从中删去两项和后剩余的项可被平均分为组,且每组的4个数都能构成等差数列,则称数列是可分数列. (1)写出所有的,,使数列是可分数列; (2)当时,证明:数列是可分数列; (3)从中一次任取两个数和,记数列是可分数列的概率为,证明:. 15.(2024·全国)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p,乙每次投中的概率为q,各次投中与否相互独立. (1)若,,甲参加第一 ... ...
~~ 您好,已阅读到文档的结尾了 ~~