首页
高中数学课件、教案、试卷中心
用户登录
资料
搜索
ID: 21967009
2025年高考数学一轮复习考点突破和专题检测 专题15 导数的应用--函数的零点问题 (原卷版+解析版)
日期:2024-12-22
科目:数学
类型:高中学案
查看:25次
大小:6997804B
来源:二一课件通
预览图
0
张
专题
,
应用
,
解析
,
原卷版
,
问题
,
零点
专题15 导数的应用--函数的零点问题5题型分类 1、函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围. 求解步骤: 第一步:将问题转化为函数的零点问题,进而转化为函数的图像与轴(或直线)在某区间上的交点问题; 第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像; 第三步:结合图像判断零点或根据零点分析参数. 2、函数零点的求解与判断方法: (1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点. (2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 3、求函数的零点个数时,常用的方法有:一、直接根据零点存在定理判断;二、将整理变形成的形式,通过两函数图象的交点确定函数的零点个数;三、结合导数,求函数的单调性,从而判断函数零点个数. 4、利用导数研究零点问题: (1)确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可用导数知识确定极值点和单调区间从而确定其大致图像; (2)方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理.可以通过构造函数的方法,把问题转化为研究构造的函数的零点问题; (3)利用导数研究函数零点或方程根,通常有三种思路:①利用最值或极值研究;②利用数形结合思想研究;③构造辅助函数研究. (一) 函数零点的求解与判断方法 (1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点. (2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. (4)结合导数,求函数的单调性,从而判断函数零点个数. 注:导函数处理零点个数问题,由于涉及多类问题特征(包括单调性,特殊位置的函数值符号,隐零点的探索、参数的分类讨论等),需要学生对多种基本方法,基本思想,基本既能进行整合,注意思路是通过极值的正负和函数的单调性判断函数的走势,从而判断零点个数,较为复杂和综合的函数零点个数问题,分类讨论是必不可少的步骤,在哪种情况下进行分类讨论,分类的标准,及分类是否全面,都是需要思考的地方 题型1:利用导数研究函数的零点个数 1-1.(2024高三下·江苏常州·阶段练习)已知,(n为正整数,). (1)当时,设函数,,证明:有且仅有1个零点; (2)当时,证明:. 【答案】(1)证明见解析; (2)证明见解析. 【分析】(1)对进行二次求导,根据二阶导数的单调性,确定一阶导数的正负,从而判断原函数的单调性,结合零点存在定理,即可求证. (2)根据题意,只需证即可,结合结合同构函数,即可容易证明. 【详解】(1)当时, 记,则 所以在区间上单调递增 而, 所以存在,使得,即 当时,,单调递减 当时,,单调递增 又,, 所以在上没有零点,在上有一个零点, 综上所述,函数在内只有一个零点. (2)当时,, 要证, 即证, 令,则, 所以在单调递减,,即, 要证只需证, 令,则, ∴在单调递减,在单调递增, ∴,即, ∴,即, 所以成立, ∴原命题得证. 【点睛】本题考查利用导数证明函数的零点个数,以及利用导数证明不等式恒成立,解决第二问的关键是利用进行放缩,以及利 ... ...
~~ 您好,已阅读到文档的结尾了 ~~
立即下载
免费下载
(校网通专属)
登录下载Word版课件
同类资源
黑龙江省哈尔滨市德强高级中学2025届高三上学期期中考试数学试卷(PDF版,含答案)(2024-12-20)
山东省济宁市兖州区实验高级中学2025届高三上学期质检数学试卷(PDF版,含答案)(2024-12-20)
2024-2025学年福建省部分学校高三(上)一轮复习数学试卷(三)(PDF版,含答案)(2024-12-20)
陕西省西安市理工大学附属中学2025届高三上学期二模数学试卷(PDF版,含答案)(2024-12-20)
云南省昆明市2024-2025学年高三上学期12月大联考试题 数学(含答案)(2024-12-20)
上传课件兼职赚钱