绝密 ★ 启用前 a2 2n an 1 2(n 1) 1 2n 1, a2n 1 a 2 n 2 2(n 2) 1 2n 3, 2025 届高三上学期学情诊断 a2 a2 2 2 1 5, 数学答案及评分标准 3 22024.12 a2 a22 1 2 1 1 3, a2 a2 3 5 (2n 3) (2n 1) (n 1)(3 2n 1)将以上各式相加,得 n 1 n 2 1 , 一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确 2 a 1 a2 2 2 2的.请把正确的选项填涂在答题卡相应的位置上. 将 1 代入上式即得 n n ,且当 n 1时也成立,所以 an n , 二、 又因为数列 an 为正项数列,所以 an n (n N ) .····································································· 6分 1.A 2.C 3.B 4.B 5.D 6.C 7.A 8.C n n n 二、选择题:本题共 3 小题,每小题 6 分,共 18 分.在每小题给出的选项中,有多项符合题目要求.全 (2)由(1)可得bn ( 1) n 3 ,令 cn ( 1) n,其前 2n项和为T2n, 部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得 0 分. 则T2n 1 2 3 4 (2n 1) 2n n,··············································································9分 9.AC 10.BCD 11.ACD 31 32 32n 3(1 3 2n ) 3(32n 1) 32n 1 3 又因为 ,························································ 12分 1 3 2 2 三、填空题:本题共 3 小题,每小题 5 分,共 15 分. 32n 1 3 所以 S2n n .··························································································· 13分2 1 π 16.[ 2, 6] 【解析】正弦定理+最值12. 13. 14. 4 3 , 2 9 1 bcosC 3bsinC sin BcosC 3sin BsinC( )根据正弦定理, 1可化为 1,1分 a c sin A sinC 四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤. sin BcosC 3sin BsinC sin A sinC 15.(1)【法一】构造常数列 sin BcosC 3sin BsinC sin(B C) sinC a2 2 2 2 2 2 2 2 2 2 sin BcosC 3sin BsinC sin BcosC sinC cosB sinC 由 n 1 an 2n 1 =(n+1) n (n N ) , a1 1,可得 an 1 (n+1) an n a1 1 0 , sinC( 3sin B cosB 1) 0. 2 故数列 an n2 2 2是恒为0的常数列,所以 an n ,······································································· 5分 ············································································································································· 5分 a C (0, π) π 又因为数列 为正项数列,所以 a n (n N ) .······································································· 6分 因为 ,所以 sinC 0,故有 3 sin B cosB 1 0,进而有 sin(B ) 1 ,因为 B (0, π) , n n 6 2 【法二】累加法 π π所以 B ( , 5π) B π π π,故有 ,所以 B .······························································· ... ...
~~ 您好,已阅读到文档的结尾了 ~~