
【新教材】3.4 函数的应用(一) (人教A版) 客观世界中的各种各样的运动变化现象均可表现为变量间的对应关系,这种关系常常可用函数模型来描述,并且通过研究函数模型就可以把我相应的运动变化规律. 课程目标 1、能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数、幂函数、分段函数模型解决实际问题; 2、感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数、幂函数、分段函数模型在数学和其他学科中的重要性. 数学学科素养 1.数学抽象:总结函数模型; 2.逻辑推理:找出简单实际问题中的函数关系式,根据题干信息写出分段函数; 3.数学运算:结合函数图象或其单调性来求最值. ; 4.数据分析:二次函数通过对称轴和定义域区间求最优问题; 5.数学建模:在具体问题情境中,运用数形结合思想,将自然语言用数学表达式表示出来。 重点:运用一次函数、二次函数、幂函数、分段函数模型的处理实际问题; 难点:运用函数思想理解和处理现实生活和社会中的简单问题. 教学方法:以学生为主体,采用诱思探究式教学,精讲多练。 教学工具:多媒体。 情景导入 我们学习过了一次函数、二次函数、分段函数、幂函数等都与现实世界有紧密联系,请学生们举例说明与此有关的生活实例. 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探. 预习课本,引入新课 阅读课本93-94页,思考并完成以下问题 1.一、二次函数、反比例函数的表达形式分别是什么? 2.幂函数、分段函数模型的表达形式是什么? 3.解决实际问题的基本过程是? 要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。 新知探究 1.常见的数学模型有哪些 (1)一次函数模型:f(x)=kx+b(k,b为常数,k≠0); (2 )反比例函数模型:f(x)=+b(k,b为常数,k≠0); (3)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0); (4)幂函数模型:f(x)=axn+b(a,b,n为常数,a≠0,n≠1); (5)分段函数模型:这个模型实则是以上两种或多种模型的综合,因此应用也十分广泛. 2.解答函数实际应用问题时,一般要分哪四步进行 提示:第一步:分析、联想、转化、抽象; 第二步:建立函数模型,把实际应用问题转化为数学问题; 第三步:解答数学问题,求得结果; 第四步:把数学结果转译成具体问题的结论,做出解答. 而这四步中,最为关键的是把第二步处理好.只要把函数模型建立妥当,所有的问题即可在此基础上迎刃而解. 四、典例分析、举一反三 题型一 一次函数与二次函数模型的应用 例1 (1)某厂日生产文具盒的总成本y(元)与日产量x(套)之间的关系为y=6x+30 000,而出厂价格为每套12元,要使该厂不亏本,至少日生产文具盒( ) A.2 000套 B.3 000套 C.4 000套 D.5 000套 (2)某水果批发商销售每箱进价为40元的苹果,假设每箱售价不得低于50元且不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱.价格每提高1元,平均每天少销售3箱. ①求平均每天的销售量y(箱)与销售单价x(元/箱)之间的函数关系式; ②求该批发商平均每天的销售利润w(元)与销售单价x(元/箱)之间的函数关系式; ③当每箱苹果的售价为多少元时,可以获得最大利润 最大利润是多少 【答案】(1)D (2)见解析 【解析】(1)因利润z=12x-(6x+30 000), 所以z=6x-30 000, 由z≥0解得x≥5 000,故至少日生产文具盒5 000套. (2)①根据题意,得y=90-3(x-50), 化简,得y=-3x+240(50≤x≤55,x∈N). ②因为该批发商平均每天的销售利润=平均每天的销售量×每箱销售利润. 所以w=(x-40)(-3x+240)=-3x2+360x-9 600(50≤x≤55,x∈N). ③因为w=-3x2+360x-9 600=-3(x-60)2+1 200,所以当x<60时,w随x的增大而增大. 又50≤x≤55,x∈N,所以当x=55时,w有最大值,最大值为1 125. 所以当每箱苹果的售价为55元时,可以获得最大利 ... ...
~~ 您好,已阅读到文档的结尾了 ~~