ID: 225097

平面的基本性质(一)

日期:2026-02-10 科目:数学 类型:高中教案 查看:40次 大小:79100B 来源:二一课件通
预览图 1/2
面的,基本,性质
  • cover
9.1平面的基本性质(一) 教学目的: 1.能够从日常生活实例中抽象出数学中所说的“平面”. 2.理解平面的无限延展性. 3.正确地用图形和符号表示点、直线、平面以及它们之间的关系. 4.初步掌握文字语言、图形语言与符号语言三种语言之间的转化. 教学重点:掌握点-直线-平面间的相互关系,并会用文字-图形-符号语言正确表示.理解平面的无限延展性. 教学难点:(1)理解平面的无限延展性;(2)集合概念的符号语言的正确使用. 授课类型:新授课. 课时安排:1课时. 教具:多媒体、实物投影仪. 内容分析: 立体几何课程是初等几何教育的内容之一,是在初中平面几何学习的基础上开设的,以空间图形的性质、画法、计算以及它们的应用为研究对象,以演绎法为研究方法.通过立体几何的教学,使学生的认识水平从平面图形延拓至空间图形,完成由二维空间向三维空间的转化,发展学生的空间想象能力,逻辑推理能力和分析问题、解决问题的能力. 平面的概念和平面的性质是立体几何全部理论的基础.平面,是现实世界存在着的客观事物形态的数学抽象,在立体几何中是只描述而不定义的原始概念,但平面是把三维空间图形转化为二维平面图形的主要媒介,在立体几何问题平面化的过程中具有重要的桥梁作用. “立体几何”作为一门学生刚开始学习的学科,其内容对学生来说基本上是完全陌生的,应以“讲授法’的主,引导学生观察和想象,吸引学生的注意力,激发学生的学习兴趣,初步培养空间想象力. 本课是“立体几何”的起始课,应先把这一学科的内容作一大概介绍,包括课本的知识结构,“立体几何”的研究对象,研究方法,学习立体几何的方法和作用等.而后引入“平面”概念,以类比的方式,联系直线的无限延伸性去理解平面的无限延展性,突破教学难点.在进行“平面的画法”教学时,不仅要会画水平放置的平面,还应会画直立的平面和相交平面(包括有部分被遮住的相交平面).在用字母表示点、直线、平面三者间的关系时,应指明是借用了集合语句,并用列表法将这些关系归类,以便作为初学者的学生便于比较、记忆和运用. 9.1节,平面的基本性质共4个知识点:平面的表示法、平面的基本性质、公理的推论、空间图形在平面上的表示方法.这一小节是整章的基础.通过平面基本性质及其推论的学习使学生对平面的直观认识上升到理性认识.教师应该认识到培养学生的空间想象力主要是通过对图形性质的学习,使学生对图形的直观认识上升到理性认识,建立空间图形性质的正确概念,这样才能学好立体几何. 为了形成学生的空间观念,这一小节通过观察太阳(平行)光线照射物体形成影子的性质来学习直观图的画法.先直观地了解平行射影的性质,这样就可正确地指导学生画空间图形. 这小节教学要求是,掌握平面的基本性质,直观了解空间图形在平面上的表示方法,会用斜二测画法画水平放置的平面图形的直观图和长方体、正方体的直观图. 教学过程: 一、复习引入: 在初中,我们主要学面图形的性质.平面图形就是由同一平面内的点、线所构成的图形.平面图形以及我们学过的长方体、圆柱、圆锥等都是空间图形,空间图形就是由空间的点、线、面所构成的图形. 当我们把研究的范围由平面扩大到空间后,一些平面图形的基本性质,在空间仍然成立.例如三角形全等、相似的充要条件,平行线的传递性等.有些性质在研究范围扩大到空间后,是否仍然成立呢?例如,过直线外一点作直线的垂线是否仅有一条?到两定点距离相等的点的集合是否仅是连结两定点的线段的一条垂直平分线? 二、讲解新课: 1.平面的两个特征:①无限延展②平的(没有厚度) 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性.一个平面把空间分成两部分,一条直线把平面分成两部分. 2.平面的画法:通常画平行四边形来表示平面 ( ... ...

~~ 您好,已阅读到文档的结尾了 ~~