ID: 22582284

4.7 第2课时 相似三角形周长和面积的性质 课件(共23张PPT) 北师大版数学九年级上册

日期:2025-04-24 科目:数学 类型:初中课件 查看:30次 大小:1334850B 来源:二一课件通
预览图 1/9
九年级,数学,北师大,PPT,23张,课件
  • cover
(课件网) 7 第2课时 相似三角形周长 和面积的性质 第四章  图形的相似 第2课时 相似三角形周长和面积的性质 探究与应用 课堂小结与检测 第四章 图形的相似 探究 相似三角形的周长比、面积比与相似比的关系 [操作发现] (1)如果△ABC∽△A'B'C',相似比为2,那么△ABC与△A'B'C'的周长比是多少 面积比呢 图4-7-5 解:△ABC与△A'B'C'的周长比是2,面积比是4. (2)如图4-7-5,△ABC∽△A'B'C',相似比为k,那么△ABC与△A'B'C'的周长比和面积比各是多少 图4-7-5 解:由已知,得=k, ∴=k. 分别作△ABC和△A'B'C'的高CD,C'D'. ∵△ABC∽△A'B'C', ∴=k(相似三角形对应高的比等于相似比). ∴·=k2. [概括新知] 相似三角形周长比和面积比的性质定理:相似三角形的周长 比等于    比,面积比等于       . 相似 相似比的平方 [类比延伸] (1)如图4-7-6,四边形A1B1C1D1∽四边形A2B2C2D2,相似比为k,那么四边形A1B1C1D1与四边形A2B2C2D2的周长比是多少 面积比是多少 图4-7-6 解: 四边形A1B1C1D1与四边形A2B2C2D2的周长比是k,面积比是k2. (2)两个相似五边形的周长比及面积比怎样呢 (3)两个相似的n边形呢 解:(2)两个相似五边形的周长比等于相似比,面积比等于相似比的平方. (3)两个相似n边形的周长比等于相似比,面积比等于相似比的平方. 图4-7-6 [概括新知] 相似多边形周长比和面积比的性质:相似多边形的周长比等 于    ,面积比等于       . 相似比 相似比的平方 应用一 利用相似三角形周长之比和面积之比进行计算 例1 如图4-7-7,已知△ABC∽△DEF,AB=3,DE=2,若△DEF的周长为8,则△ABC的周长为    . 图4-7-7 12 变式1 已知△FBC∽△EAD,它们的周长分别为30和15,若边FB上的中线长为10,则边EA上的中线长为    . 变式2 两个相似三角形的最短边长分别为5 cm和3 cm,它们的周长之差为12 cm,那么大三角形的周长为    .  5 30 cm 例2 (教材典题)如图4-7-8,将△ABC沿BC方向平移得到△DEF,△ABC与△DEF重叠部分(图中阴影部分)的面积是△ABC的面积的一半.已知BC=2,求△ABC平移的距离. 图4-7-8 解:根据题意,可知EG∥AB. ∴∠GEC=∠B,∠EGC=∠A. ∴△GEC∽△ABC(两角分别相等的两个三角形相似). ∴=()2=(相似三角形的面积比等于相似比的平方), 即.∴EC2=2.∴EC=. ∴BE=BC-EC=2-, 即△ABC平移的距离为2-. 相似三角形面积比的性质的“两点注意” (1)相似三角形的面积比等于相似比的平方,不要与周长比混淆. (2)在应用性质“相似三角形的面积比等于相似比的平方”时,注意由相似比求面积比时要平方;反过来,由面积比求相似比时要开方. 防 易错 应用二 利用相似多边形周长之比和面积之比进行计算 例3 (1)已知一个四边形的边长分别为3,4,5,6,与它相似的四边形的最小边长为4,那么这个相似四边形的周长是   ; (2)两个相似多边形的一组对应边长分别为3 cm和4.5 cm.如果它们的面积和为78 cm2,那么较大多边形的面积为     cm2. 24 54 [本课时认知逻辑] 相似三角形周 长比和面积比 的性质定理 实例 计算、归纳 应用 计算三角形的 周长、面积等 相似多边形的性质 应用 计算多边形的 周长、面积等 实例拓展 计算、归纳 [检测]  1.两个相似三角形的周长比是1∶2,则其相似比是 (  ) A.1∶1 B.1∶2 C.1∶3 D.1∶4 B 2.已知△ABC∽△DEF,且AB=3,DE=6,若△ABC的面积为20,则△DEF的面积为 (  ) A.5 B.40 C.80 D.无法计算 C 3.已知△ABC∽△A'B'C',且S△ABC∶S△A'B'C'=16∶9,若AB=2,则A'B'的长为    . 1.5 4.如图4-7-9所示,在 ABCD中,AE∶EB=1∶2. (1)求△AEF与△CDF的周长比; 图4-7-9 解:∵AE∶EB=1∶2,∴AE∶AB=1∶3. ∵四边形ABCD是平行四边形, ∴AB=CD,AB∥CD.∴△AE ... ...

~~ 您好,已阅读到文档的结尾了 ~~