
26.4综合与实践 概率在遗传学中的应用同步练习 一、单选题 1.在一次摸球游戏中,规定:连续摸到2个相同颜色的小球即为胜利,且每人只有一次挑战机会.小星和小红一起参加游戏,两人轮流从不透明的箱子里摸出一个小球(不放回),小星先摸.现已知箱子里有4个红球和2个白球,则下列推断正确的是( ) A.一定是小星获胜 B.若第一轮两人都摸到了白球,则一定是小星获胜 C.一定是小红获胜 D.若第一轮两人都摸到了红球,则一定是小红获胜 2.“交通文明,让长沙与我一起白头偕老”.自长沙开展“文明城市创建”以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过一个路口,该路口有红、黄、绿三色交通信号灯,他在路口遇到绿灯的概率为,遇到黄灯的概率为,那么他遇到红灯的概率为( ) A. B. C. D. 3.某小区门口的电子显示屏上滚动显示的内容和停留时间如图所示,小明抬头看显示屏时,最大可能看到的内容是( ) 内容 时间/秒 日期 4 星期 3 时间 6 天气 3 A.日期 B.星期 C.时间 D.天气 4.我市举办的“喜迎党的二十大,奋进新征程———乡村振兴成果展”吸引了众多市民前来参观,如图所示的是该展览馆出入口的示意图.小颖入口进出口的概率是( ) A. B. C. D. 5.一个密码箱的密码,每个数位上的数都是从0到9的自然数.若要使不知道密码的人一次就拨对密码的概率小于,则密码的位数至少需要设( ) A.五位 B.四位 C.三位 D.二位 6.在数学活动课上,张明运用统计方法估计瓶子中的豆子的数量.他先取出粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出粒豆子,发现其中粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为( )粒. A. B. C. D. 7.为保障人民的身体健康,卫生部门对某医药店进行检查,抽查了某品牌的口罩5包(每包10只),其中合格口罩的只数分别是:9、10、9、10、10,则估计该品牌口罩的合格率约是 ( ) A.95% B.96% C.97% D.98% 8.在一个密闭不透明的袋子里有若干个白球.为估计白球个数,小何向其中投入8个黑球,搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复摸球400次,其中80次摸到黑球,则估计袋中大约有白球( ) A.40个 B.32个 C.48个 D.24个 9.甲、乙、丙、丁四位同学在操场上练习互相传球,由甲开始发球,并作为第一次传球,则第二次传完后,球回到手上概率最高的同学是( ) A.甲 B.乙 C.丙 D.丁 10.李明参加的社区抗疫志愿服务团队共有A、B、C、D四个服务项目,其中每个服务项目又分为第一小组和第二小组,则李明分到A项目的第一小组的概率是( ) A. B. C. D. 二、填空题 11.某船队要对下月是否出海作出决策,若出海后是好天气,可得收益5000元;若出海后天气变坏,将要损失2000元;若不出海,无论天气好坏都要承担1000元的损失费,船队队长通过上网查询下月的天气情况后,预测下月好天气的机会是,坏天气的机会是,则作出决策为 (填“出海”、“不出海”). 12.一批电子产品的抽样合格率为75%,当购买该电子产品足够多时,平均来说,购买 个这样的电子产品,可能会出现1个次品. 13.现有五张正面分别标有数字,,,,的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为,.则点在第四象限的概率为 . 14.一个密码箱的密码, 每个数位上的数都是从0到9的自然数, 若要使不知道密码的人一次就拨对密码的概率小于, 则密码的位数至少需要 位. 15.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮 ... ...
~~ 您好,已阅读到文档的结尾了 ~~