
10.4三元一次方程组 一、单选题 1.如果方程组的解也是方程的解,那么的值是( ) A. B.2 C. D. 2.在等式中,当时,;当时,;当时,,则的值为( ) A.1 B.4 C.9 D.16 3.观察方程组的系数特点,若要使求解简便,消元时应该先消去( ) A. B. C. D.或 4.三元一次方程组 的 的值为( ) A.10 B.11 C.12 D.13 5.在一个的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的的方格称为一个三阶幻方.如图方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则的值是( ) y 3 2 x A.1 B.17 C. D. 6.三元一次方程组的解是( ) A. B. C. D. 7.已知是三元一次方程组的解,那么的值为( ) A. B.6 C.9 D.18 8.小华到学校超市买铅笔支,作业本5个,笔芯2支,共花元;小刚在这家超市买同样的铅笔支,同样的作业本4个,同样的笔芯1支,共花元钱.若买这样的铅笔1支,作业本1个,笔芯1支共需( ). A.3元 B.元 C.2元 D.无法求出 二、填空题 9.若,则 , , . 10.方程组的解是 . 11.已知,则 . 12.若三元一次方程,当,时,,则的值为 . 13.中,当时,,当时,,当时,,则 , , . 14.母亲节到了,小红、小丽和小华到花店买花送给自己的母亲.小红买了支玫瑰,支康乃馨,支百合花,付了元;小丽买了支玫瑰,支康乃馨,支百合花,付了元;小华想买上面三种花各支,则她应付 元. 15.某人上午先到市场购买只鸡只兔只鸭共元,又去市场购买只鸡只兔只鸭共元如果单价不变,他买只鸡只兔只鸭需要 元. 16.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.测量的数据如图,则桌子的高度等于 . 三、解答题 17.一个三位数各位上的数字之和为17,百位上的数字与十位上的数字的和比个位上的数字大3,如果把百位上的数字与个位上的数字对调,那么所得的数比原数大495.求原三位数. 18.已知代数式,当时,其值为4;当时,其值为8;当时,其值为25;则当时,求这个代数式的值 19.某车间共有职工63人,加工一件产品需经三道工序,平均每人每天在第一道工序里能加工300件,在第二道工序里能加工500件,在第三道工序里能加工600件,为使每天能生产出更多的产品,应如何安排各工序里的人数? 20.阅读下列文字,请仔细体会其中的数学思想. (1)问题:某班在购买啦啦操比赛的物资时,准备购买红色、黄色,蓝色三种颜色的啦啦球,其颜色不同则价格不同,第一次买了15个红色啦啦球、7个黄色啦啦球、11个蓝色啦啦球共用1084元,第二次买了2个红色啦啦球、4个黄色啦啦球、3个蓝色啦啦球共用304元,试问第三次买了红、黄、蓝啦啦球各一个共需多少元?(假定三次购买红、黄、蓝啦啦球单价不变) 解:设购买红、黄、蓝啦啦球的单价分别为x、y、z元,依题意得: , 上述方程组可变形为:, 我们可以把看成一个整体,设,上述方程组又可化为:, 消去n,则可求得m的值,即 ; 阅读后,细心的你,一定体会到了其中的数学思想,试解决下列问题: (2)某同学买11支黑笔、3支红笔、7个笔记本,共用去元;如果买8支黑笔、2支红笔、5个笔记本,则共用去元,试问只买一支黑笔、一支红笔、一个笔记本,共需多少钱? (3)若关于m,n的方程组的解与有相同的解,求a、b的值. 参考答案 一、单选题 1.B 【分析】本题主要考查三元一次方程组的解法;把三元转换成二元利用消元法解出的值,再代入求解即可. 【详解】解:, 得④, 得, 解得:, ∴, ∴将,代入, 得, 解得:, 故选:B. 2.D 【分析】本题主要考查三元一次方程组,把当时,;当时,;当时,代入中,解出的值即可求出结果. 【详解】解:根据 ... ...
~~ 您好,已阅读到文档的结尾了 ~~