
中小学教育资源及组卷应用平台 5.3一次函数的图像与性质 学校:_____姓名:_____班级:_____考号:_____ 一、单选题 1.若正比例函数的图象经过第一、第三象限,则一次函数在平面直角坐标系中的图象大致是( ) A. B. C. D. 2.对于一次函数y=kx+b(k<0,b>0),下列的说法错误的是( ) A.y随着x的增大而减小 B.点(﹣1,﹣2)可能在这个函数的图象上 C.图象与y轴交于点(0,b) D.当时,y<0 3.已知一次函数,其中随的增大而减小,且,则在平面直角坐标系内这个一次函数的图象大致是( ) A. B. C. D. 4.已知一次函数的图象经过点,则关于x的不等式的解集为( ) A. B. C. D. 5.将直线向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是( ) A.直线经过一、三、四象限 B.y随x的增大而减小 C.与y轴交于(2,0) D.与x轴交于(-4,0) 6.关于正比例函数,下列说法正确的是( ) A.图象经过第一、三象限 B.图象经过原点 C.y随x增大而增大 D.点在函数的图象上 7.已知一次函数的图象经过一、二、四象限,则下列判断中正确的是( ) A., B., C., D., 8.如图是函数的图象,则k的值可能是( ) A.1 B.0 C. D. 9.已知点,是一次函数图象上的两点,则和的大小关系是( ) A. B. C. D. 10.一次函数满足条件:①随的增大而减小;②它的图象与轴交于负半轴,则函数图象不可能经过的点是( ) A. B. C. D. 11.如图,将的正方形网格放置在平面直角坐标系中,每个小正方形的顶点称为格点.每个小正方形的边长都是1,正方形的顶点都在格点上.若直线与正方形有公共点,则的取值不可能是( ) A. B. C. D. 12.某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x 千米,个体车主收费y1元,国营出租车公司收费为y2元,观察下列图象可知,当x( )时,选用个体车较合算. A.x<1500 B.x≤1500 C.x≥1500 D.x>1500 二、填空题 13.已知一次函数(为常数且). (1)该一次函数恒经过点,则点的坐标为 ; (2)当时,函数有最大值8,则的值为 . 14.求与直线平行且经过点的直线表达式为 . 15.如果点在正比例函数的图象上,那么y随着x的增大而 .(填“增大”或“减小”) 16.已知一次函数,当时,函数的最大值是 . 17.如图,直线与相交于点,则关于x的方程的解是 . 三、解答题 18.在同一直角坐标系中画出函数和的图象. 列表: x … 0 1 2 … … … … … … … 描点、连线: 19.已知正比例函数,且y随x的增大而增大,求m的值. 20.若两个一次函数,则称函数为这两个函数的“和谐函数”. (1)求一次函数与的“和谐函数”的表达式,若此“和谐函数”与轴相交于点,与轴相交于点,求的面积; (2)若一次函数的“和谐函数”为,则_____,_____; (3)已知一次函数与的“和谐函数”的图象经过第一、二、四象限,则常数、满足的条件为:_____1且_____0(用“>”或“<”填空). 21.已知是关于x的一次函数. (1)求m的值. (2)当时,求函数值y的取值范围. 22.已知一次函数,且当时,对应的函数值的取值范围是,求的值. 23.已知正比例函数为常数. (1)求的值. (2)在平面直角坐标系中,画出该正比例函数的图象. 24.非负数满足,求的最大值与最小值. 《5.3一次函数的图像与性质》参考答案 题号 1 2 3 4 5 6 7 8 9 10 答案 A B D B D B B A C D 题号 11 12 答案 C D 1.A 【分析】本题考查了正比例函数、一次函数的性质和图象.根据正比例函数的性质确定k的符号,然后根据一次函数的性质即可得到结论. 【详解】解:∵正比例函数的图象经过第一、第三象限 ∴ ∴一次函数的图象经过第一、第二、第三象限 ... ...
~~ 您好,已阅读到文档的结尾了 ~~