中小学教育资源及组卷应用平台 5.2二元一次方程组的解法北师大版( 2024)初中数学八年级上册同步练习 分数:120分 考试时间:120分钟; ;命题人: 一、选择题:本题共12小题,每小题3分,共36分。在每小题给出的选项中,只有一项是符合题目要求的。 1.在解方程组的过程中,将代入可得( ) A. B. C. D. 2.由方程组可得与的关系式是 ( ) A. B. C. D. 3.方程组的解满足,则的值是 ( ) A. B. C. D. 4.在平面直角坐标系中,对于任意一点,规定:例如,当时,所有满足该条件的点围成的图形的面积为( ) A. B. C. D. 5.用加减消元法解二元一次方程组时,下列方法中无法消元的是( ) A. B. C. D. 6.有下列说法: 在同一平面内,过直线外一点有且只有一条直线与已知直线平行; 无论取任何实数,多项式总能分解成两个一次因式积的形式; 若,则可以取的值有个; 关于,的方程组为,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是. 其中正确的说法是( ) A. B. C. D. 7.符号,各代表一个数字,且满足以下两个等式,,则满足等式中的值为( ) A. B. C. D. 8.已知,,则代数式的值为( ) A. B. C. D. 9.已知关于、的方程组的解满足,则的值为 . A. B. C. D. 10.利用加减法解方程组下列做法正确的是 ( ) A. 要消去,可以将 B. 要消去,可以将 C. 要消去,可以将 D. 要消去,可以将 11.已知关于、的二元一次方程组,则的值为( ) A. B. C. D. 12.若方程组中未知数、满足,关于的不等式组有且只有个整数解,则所有满足条件的整数的和为( ) A. B. C. D. 二、填空题:本题共4小题,每小题3分,共12分。 13.若,为实数,且与互为相反数,则的平方根为 . 14.若关于,的方程组的解是则关于,的方程组的解是 . 15.若与是同类项,则的立方根是 . 16.关于,的二元一次方程组的解是正整数,则整数的值的和为 . 三、解答题:本题共9小题,共72分。解答应写出文字说明,证明过程或演算步骤。 17.本小题分 阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法. 解:将方程变形,得, 即 把方程代入,得, 所以. 把代入,解得. 所以原方程组的解为 请你模仿小军的“整体代换”法解方程组: 18.本小题分 若,都是实数,且满足,则称点为完美点. 判断点是否为完美点. 已知关于的方程组当为何值时,以方程组的解为坐标的点是完美点?请说明理由. 19.本小题分 甲、乙二人同时解一个方程组甲解得乙解得甲仅因为看错了方程中的系数,乙仅因为看错了方程中的系数,求方程组正确的解. 20.本小题分 对于实数,,定义关于“”的一种运算:,例如. 求的值; 若,,求的值. 21.本小题分 阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法. 解:将方程变形,得, 即 把方程代入,得, 所以. 把代入,解得. 所以原方程组的解为 请你模仿小军的“整体代换”法解方程组: 22.本小题分 已知关于,的方程组与同解,求的值. 23.本小题分 在代数式中,当,时,该代数式的值是;当,时,该代数式的值是求,的值. 24.本小题分 已知关于,的方程组和的解相同,求,的值. 25.本小题分 小鑫、小童两人同时解方程组时,小鑫看错了方程中的,解得,小童看错了中的,解得 求正确的,的值; 求原方程组的正确解. 答案和解析 1.【答案】 【解析】略 2.【答案】 【解析】,得 3.【答案】 【解析】把代入,得,解得把代入,得把,代入,得故选A. 4.【答案】 【解析】解:, ,或,. 当,时,点满足,或,, 在图象上,线段,即为图中正方形的右边,线段,即为图中正方形的左边; 当,时,点满足,,或,, 在图象上,线段,即为图中正 ... ...