ID: 23881566

7.4 三角函数应用(课件 学案 练习)高中数学苏教版(2019)必修 第一册

日期:2025-09-20 科目:数学 类型:高中试卷 查看:76次 大小:12176536B 来源:二一课件通
预览图 0
三角函数,应用,课件,学案,练习,高中
    (课件网) 7.4 三角函数应用 探究点一 函数中参数的物理意义 探究点二 三角函数模型在物理学中的应用 探究点三 三角函数模型在日常生活中的应用 ◆ ◆ ◆ ◆ 课前预习 课中探究 备课素材 练习册 答案核查【导】 答案核查【练】 【学习目标】 了解三角函数是刻画周期变化的数学模型,会用三角函数解决 一些简单的实际问题. 知识点一 函数 中各量的物理意义 简谐运动可以用函数, 表示,其中 , . (1) 就是这个简谐运动的_____,它是做简谐运动的物体离开平 衡位置的_____; (2)简谐运动的周期是 _ __,它是做简谐运动的物体往复运动一 次所需要的时间; (3)简谐运动的频率由公式_ _____给出,它是做简谐运动的 物体在单位时间内往复运动的次数; (4)_____称为相位,时的相位 称为_____. 振幅 最大距离 初相位 【诊断分析】 判断正误.(请在括号中打“√”或“×”) (1)函数,的最大值为 .( ) × [解析] 函数,的最大值为 . (2)函数的初相位为 .( ) × [解析] 函数的初相位为 . 判断正误.(请在括号中打“√”或“×”) (3)一个弹簧振子做简谐振动的周期为,振幅为 ,则该振 子在内通过的路程为 .( ) × [解析] 该振子在一个周期内通过的路程为,所以该振子在 内通过的路程为 . 判断正误.(请在括号中打“√”或“×”) (4)单摆从某点开始来回摆动,离开平衡位置的位移 (单位:)和时间(单位: )的函数关系式为 ,那么单摆来回摆动一次所需的时间为 .( ) √ [解析] 单摆来回摆一次所需时间为一个周期,根据 ,得周期 . 知识点二 解答三角函数应用题的基本步骤 应用三角函数模型解决实际问题时,首先要把实际问题抽象为数学问题, 通过分析它的变化趋势确定它的周期,从而建立适当的三角函数模型. 解答三角函数应用题的步骤可分为四步:审题、建模、解模、还原评价. (1)审题:先审清楚题目条件、要求,理解数学关系. (2)建模:在细心阅读与深入理解题意、分析题目条件(如周期性 等)的基础上,引进数学符号,将问题中的非数学语言全部转化为数学 语言,然后根据题意,列出数量关系,即建立三角函数模型,这时要注意 三角函数的定义域应符合实际问题要求,这样便将实际问题转化成了 数学问题. (3)解模:对建立的三角函数模型进行分析研究,运用三角函数的有 关知识进行推理、运算,使问题得到解决. (4)还原评价:把数学结论还原为实际问题的解答. 探究点一 函数 中参数的物理意义 例1 指出下列函数的振幅、周期、初相位 . (1), ; 解:, , . (2), . 解:,则有 , , . 变式 函数 的部分图象如 图所示,则的最小正周期和初相位 分别是( ) A.2, B. , C. , D. , √ [解析] 由题图知, ,所以 , ,则,所以 . 因为,且的图象在点 处下降, 所以 ,,即 ,. 由 ,得 .故选B. [素养小结] 首先把函数解析式化为的形式,再 求振幅、周期、初相位.应注意. 探究点二 三角函数模型在物理学中的应用 例2 已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位 移(单位:)随时间(单位: )的变化规律为 , .用“五点法”作出这个函数的简图,并 回答下列问题. 解:列表如下: 0 0 1 0 0 0 4 0 0 描点、连线,可得, 的图象如图中实线部分所示. (1)小球在开始振动 时的位移是多少? 解:将代入 , 得,所以小球开始振动时的位 移是 . 例2 已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位 移(单位:)随时间(单位: )的变化规律为 , .用“五点法”作出这个函数的简图,并 回答下列问题. 例2 已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位 移(单位:)随时间(单位: )的变化规律为 , .用“五点 ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~