ID: 23882850

3.1.2函数的表示方法(3知识点 10题型)(含答案)-2025-2026学年第一学期高一数学同步讲与练(人教A版2019必修第一册)

日期:2025-09-19 科目:数学 类型:高中学案 查看:44次 大小:3418384B 来源:二一课件通
预览图 0
3.1.2,高一,必修,2019,人教,同步
    3.1.2 函数的表示方法 知识点1 函数的表示法 函数的表示法有三种,分别是解析法、列表法、图象法 表示法 概念 优缺点 解析法 用解析式表示两个变量之间的对应关系 能简明全面地概括两个变量间的对应关系,也可以通过解析式求出任何一个变量的函数值;但是缺乏直观 列表法 列出表格来表示两个变量之间的对应关系 不需计算即可直接看出表格中自变量的函数值;但表格外的数据没法求解 图象法 用图象表示两个变量之间的对应关系 能直观形象地表示随着自变量的变化,相应函数值的变化趋势;但是作图法得到的函数值未必准确 知识点2 求函数的解析式 求函数解析式的四种常用方法 (1)换元法:设t=g(x),解出x,代入f(g(x)),求f(t)的解析式即可.注意换元时t的取值范围. (2)配凑法:对f(g(x))的解析式进行配凑变形,使它能用g(x)表示出来,再用x代替两边所有的“g(x)”即可. (3)待定系数法:若已知函数f(x)的类型,求解析式时,用待定系数法.先设出它的一般形式,根据条件确定相关的系数即可. (4)方程组法(或消元法):当题目中出现f(x)和f(-x),f(x)与f 的关系式时,经常通过构造方程组来求解. 注意:写解析式时,应注明定义域. 知识点3 分段函数 1.定义:函数y=f(x)在定义域上不同范围内的自变量有不同的对应关系,则函数y=f(x)称为分段函数. 注意点: 分段函数的定义域是各段范围的并集,值域为各段上值域的并集. 2.分段函数的常见的几种类型 (1)取整函数:(表示不大于的最大整数). (2) (3)含绝对值符号的函数,如 (4)自定义函数,如 3.分段函数图象的画法 (1)作分段函数图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏. (2)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后作出函数的图象. 函数解析式的求法 1、直接代入法:已知的解析式,求的解析式时常用此法.用替换解析式中的所有自变量法.例如,求的解析式时,由. 2、待定系数法:若已知函数的类型(如一次函数、二次函数等),可用待定系数法. (1)确定所有函数问题含待定系数的一般解析式; (2)根据恒等条件,列出一组含有待定系数的方程; (3)解方程或消去待定系数,从而使问题得到解决. 3、换元法:主要用于解决已知的解析式,求函数解析式的问题. (1)先令,注意分析的取值范围; (2)反解出x,即用含的代数式表示x; (3)将中的x度替换为的表示,可求得的解析式,从而求得. 4、配凑法:由已知条件,可将改写成关于的表达式,然后以x替代g(x),便得的解析式. 5、方程组法:主要解决已知与、、……的方程,求解析式. 例如:若条件是关于与的条件(或者与)的条件, 可把代为(或者把代为)得到第二个式子,与原式联立方程组,求出. 6、特殊值法:所给函数方程含有两个变量时,可对这两个变量交替使用特殊值代入,或使这两个变量相等再代入,最后利用已知条件求出未知的函数.至于取什么特殊值,根据题目特征而定. 题型一 图象法表示函数关系 1.(多选)下列图象中,是函数图象的是( ) A. B. C. D. 【答案】ACD 【分析】根据函数的概念逐一验证即可求解. 【详解】根据函数的定义,一个自变量值对应唯一一个函数值,或者多个自变量值对应唯一一个函数值,故B的图象不是函数图象.其余的都是函数图像. 故选:ACD. 2.如图所示的容器中装有燃料,假设燃烧时燃料以均匀的速度消耗,记剩余燃料的高度为,则关于时间的函数的大致图象可能是( ) A. B. C. D. 【答案】A 【分析】根据容器特征可分析燃料燃烧时剩余燃料高度的变化规律,根据所给图象的变化情况可得高度 ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~