ID: 23908861

江西省南昌市高考零模2026届高三上学期9月测试数学试卷(含答案)

日期:2025-09-18 科目:数学 类型:高中试卷 查看:78次 大小:499303B 来源:二一课件通
预览图 1/3
江西省,试卷,数学,测试,9月,学期
  • cover
2026 届高三摸底考试试卷数 学 一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只 有一项符合题目要求的. 设复数 z 满足 z (1 i)i ,则| z | 2 C. D.1 已知a ( , 2) , b (1, 2) , a b ,则 4 B. 4 C.1 D. 1 已知函数 f ( x) sin x cos x ,则下列选项中是 f ( x) 的一个单调递增区间的是 π π , ] 2 2 B.[ π , 3π ] 4 4 C.[ 3π π , ] 4 4 D.[ 3π , 7π ] 4 4 已知全集U {x | x 10, x N*} ,集合 A, B 是U 的子集,若(I A) ∩ B {5, 7,9} , A ∩ B {2} , (IU A) ∩(IU B) {6,8},则集合 A {2, 3, 4} B.{1, 2, 4} C.{1, 2, 3} D.{1, 2, 3, 4} 已知平面 , ,直线a,b ,则下列结论正确的是 A.若a ,b//a ,则b// B.若 // , a ,b ,则a//b 若a// ,b ,则a b D.若 // , a// ,则a// 已知首项为1的数列{an},其前 n 项积是公差为 3 的等差数列,则a3 A. 4 B. 3 C. 7 4 D. 10 7 已知甲、乙、丙、丁四位老师参加青年教师教学大赛,问其比赛结果,他们回答如下: 甲:丙第一,乙第二;乙:丙第二,丁第三;丙:丁最后,甲第二. 如果每个人的两个回答中,都恰有一个是正确的,而且没有并列名次,那么这次比赛获得第一、二、三、四名依次是 丙、甲、丁、乙 B.丙、甲、乙、丁 C.甲、乙、丙、丁 D.甲、乙、丁、丙 f (x) 2x3 3x2 12x ,已知b 0 ,若“ f (x) a ”的充要条件是“ x b ”,则实数 b 的最大值为 2 5 2 1 1 2 二、多项选择题:共 3 小题,每小题 6 分,共 18 分.在每小题给出的四个选项中,有多项 符合题目要求.全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分. 已知 P 是圆C : (x 1)2 ( y 2)2 9 上的一个动点,过原点 O 的动直线与圆C 交于 M , N 两点,则下列说法正确的是 | OP | 的最大值为3 B. | OP | 的最小值为3 C. | MN |最大值为6 D. | MN |最小值为2 某电商平台为了解用户对配送服务的满意度,从某地区随机抽取了 500 名用户进行问 卷评分调查,将评分数据按[40, 50) ,[50, 60) ,……,[90,100] 分组整理得到如右下方频 率分布直方图,记该样本的平均数为 ,三个四分位数分别为a, b, c(a b c) ,则下列判断正确的是 a 40 b a c b 100 c a, b, c 成等差数列 b 0.035 0.025 0.015 0.005 0 40 50 60 70 80 90 100 评分 已知函数 f (x) xex (2 x)e2 x ,则以下说法正确的是 f (x) 有对称中心 B. f (x) 有对称轴 C. f (x) 的最小值为2e D. x 1, f (x) 三、填空题:共 3 个小题,每小题 5 分,共 15 分. 1 f () x 已知(2 x)6 a a x a x2 a x5 a x6 ,则a . 0 1 2 5 6 5 如图,双曲线C : x a2 y2 b2 1 的右焦点为 F ,过点 F 作渐近线l1 : y b x 的垂线l ,垂足为 A ,且l 与另一条 a 渐近线、 y 轴分别交于 B, C ,若 BA AC ,则双曲线的离心率为 . 如图,在 ABC 中, BAC 120o , D, E 是线段 BC 上的两个点, ADE 为正三角 形, BD 4EC ,则 tan ABC . A B D E C 四、解答题:共 5 小题,共 77 分.解答应写出文字说明、证明过程或验算步骤. (本题 13 分) 已知抛物线C : x2 2 py( p 0) 的焦点为 F ,过点 F 作直线l 与抛物线C 交于 A, B 两 点. O 为坐标原点.当直线l y 轴时, | AB | 4 . 求抛物线C 的标准方程; 若直线 AB 的斜率为1,求△ABO 的面积. 16.(本题 15 分) 已知正项数列{a }满足a a 4n . 若{an }是等比数列,求{an }的通项公式; 若a1 1 ,求数列{an }的前2n 项的和. 17.(本题 15 分) 中央政治局会议指出,要强化科技创新和产业链供应链韧性,加强基础研究,推动应用研究,开展补链强链专项行动,加快解决“卡脖子”难题.某科研院所成立攻关研究小组,准备攻克一个“卡脖子”难题,研究分两个阶段,第 ... ...

~~ 您好,已阅读到文档的结尾了 ~~