(
课件网) 第三章 二次函数 4 二次函数y=ax2+bx+c的图象与性质 第3课时 二次函数y=ax2+bx+c的图象与性质(3) 抛物线 开口方向 对称轴 顶点坐标 开口向下 开口向下 开口向下 直线x=0 (0,0) (0,1) (0,-1) 直线x=0 直线x=0 4 二次函数y=ax2+bx+c的图象与性质 第3课时 二次函数y=ax2+bx+c的图象与性质(3) 抛物线 开口方向 对称轴 顶点坐标 开口向上 开口向上 开口向上 直线x=0 直线x=1 直线x=-1 (0, 0) (1, 0) (-1, 0) 抛物线 开口方向 对称轴 顶点坐标 y = 2(x+3)2 y = -3(x-1)2 y = -4(x-3)2 向上 直线x=-3 ( -3 , 0 ) 直线x=1 直线x=3 向下 向下 ( 1 , 0 ) ( 3, 0) O x y 1 2 3 4 5 1 2 3 4 5 –5 –4 –3 –2 –1 –5 –4 –3 –2 –1 (0,3) (0,-3) 如何由 的图象得到 的图象。 、 3 3 1 2 - - = x y 3 3 1 2 + - = x y 上下平移 4 二次函数y=ax2+bx+c的图象与性质 第3课时 二次函数y=ax2+bx+c的图象与性质(3) O x y 1 2 3 4 5 1 2 3 4 5 –5 –4 –3 –2 –1 –5 –4 –3 –2 –1 x= - 2 (-2,0) (2,0) x= 2 如何由 的图象得到 的图象 、 左右平移 说出(1)抛物线y=2x +3和抛物线y=2x -3如何由抛物线y=2x 平移而来. 式 形 + 向上 - 向下 式 形 + 向左 - 向右 (2)二次函数y=2(x-3) 与抛物线y=2(x+3) 如何由抛物线y=2x 平移而来. y=ax2 y=a(x-h)2 y=ax2+k y=ax2 k>0 k<0 上移 下移 左加 右减 说出平移方式,并指出其顶点与对称轴。 顶点在x轴上 顶点在y轴上 问题:顶点不在坐标轴上的二次函数又如何呢? 例3.画出函数 的图象.指出它的开口方向、顶点与对称轴. x … -4 -3 -2 -1 0 1 2 … … … 解: 先列表 再描点 后连线. -5.5 -3 -1.5 -1 -1.5 -3 -5.5 1 2 3 4 5 x -1 -2 -3 -4 -5 -6 -7 -8 -9 1 y o -1 -2 -3 -4 -5 -10 直线x=-1 … … … … 2 1 0 -1 -2 -3 -4 x 解: 先列表 再描点、连线 -5.5 -3 -1.5 -1 -1.5 -3 -5.5 抛物线 的开口方向、对称轴、顶点 向左平移1个单位 向下平移1个单位 向左平移1个单位 向下平移1个单位 平移、方法1: 平移方法2: 1 2 3 4 5 x -1 -2 -3 -4 -5 -6 -7 -8 -9 1 y o -1 -2 -3 -4 -5 -10 x=-1 (2)抛物线 和 有什么关系 1. 2. 3. -1 -2 -3. 0. 1. 2. 3. 4. -1 x y y=2x2 (1,1) (0,0) (1,0) 在同一坐标系内,画出四个抛物线的草图。 向下平移一个单位 向左平移一个单位 向左平移一个单位 向下平移 一个单位 归纳总结: (1)a的符号决定抛物线的开口方向 的图象性质: (2)对称轴是直线x=h (3)顶点坐标是(h,k) 图象的性质:开口向下,对称轴是x=-1,顶点坐标是(-1,-1) 相同 不同 向上 向下 x=h (h,k) h、k 练习1:指出下面函数的开口方向,对称轴,顶点坐标,最值及增减性。 1) y=2(x+3)2+5 2) y=4(x-3)2+7 3) y=-3(x-1)2-2 4) y=-5(x+2)2-6 练习2:对称轴是直线x= -2的抛物线是( ) A y= -2x2-2 B y=2x2-2 C y= -2(x+2)2-2 D y= -5(x-2)2-6 C 1、试分别说明将抛物线的图象通过怎样的平移得到y=x2的图象: (1) y=(x-3)2+2 (2)y=(x+4)2-5 2.与抛物线y=-4x 2形状相同, 顶点为(2,-3)的抛物线 表达式为_____ y= - 4(x-2)2-3或y= 4(x-2)2-3 二次函数 开口方向 对称轴 顶点坐标 y=2(x+3)2+5 向上 ( 1 , -2 ) 向下 向下 ( 3 , 7) ( 2 , -6 ) 向上 直线x=-3 直线x=1 直线x=3 直线x=2 (-3, 5 ) y=-3(x-1)2-2 y = 4(x-3)2+7 y=-5(2-x)2-6 1.完成下列表格: 学以致用 2.请回答抛物线y = 4(x-3)2+7由抛物线y=4x2怎样平移得到 3.抛物线y =-4(x-3)2+7能够由抛物线y=4x2平移得到吗 学以致用 如何平移: 学以致用 1.抛物线的上下平移 (1)把二次函数y=(x+1)2的图象, 沿y轴向上平移3个单位, 得到_____的图象; (2 ... ...