2.2 古典概型的应用 第一课时 古典概型的概率计算 1.将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A.0.3 B.0.5 C.0.6 D.0.8 2.甲、乙两人一起去游览公园,他们约定各自独立地从1号到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们在同一个景点的概率是( ) A. B. C. D. 3.甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( ) A. B. C. D. 4.设a是从集合中随机取出的一个数,b是从集合中随机取出的一个数,构成一个样本点(a,b).记“这些样本点中,满足logba≥1”为事件E,则E发生的概率是( ) A. B. C. D. 5.(多选)一个袋子中装有3件正品和1件次品,按以下要求抽取2件产品,其中结论正确的是( ) A.任取2件,则取出的2件中恰有1件次品的概率是 B.每次抽取1件,不放回抽取两次,样本点总数为16 C.每次抽取1件,不放回抽取两次,则取出的2件中恰有1件次品的概率是 D.每次抽取1件,有放回抽取两次,样本点总数为16 6.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是 . 7.若f(x)=2x-1(x=1,2,3,4,5,6)的值域构成集合A,g(x)=3x+1(x=1,2,3,4,5,6)的值域构成集合B.任取一实数a∈A∪B,则a∈A∩B的概率是 . 8.现有A,B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).小莉掷A立方体朝上的数字为x、小花掷B立方体朝上的数字为y来确定点P(x,y),则她们各掷一次所确定的点P落在已知抛物线y=-x2+4x上的概率为 . 9.连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),记“两次向上的数字之和等于m”为事件A,则P(A)最大时,m= . 10.为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序,通过预赛,选拔出甲、乙、丙三支队伍参加决赛. (1)求决赛中甲、乙两支队伍恰好排在前两位的概率; (2)求决赛中甲、乙两支队伍出场顺序相邻的概率. 11.《九章算术》是中国古代数学专著,全书采用问题集的形式,收集有246个与生产、生活实践有联系的应用问题,其中“均赋粟”问题讲的是古代劳动人民的赋税问题.现拟编试题:已知甲、乙、丙、丁四县向国家交税,则甲必须第一个交税且乙不是第三个交税的概率为( ) A. B. C. D. 12.将一枚质地均匀的骰子投掷两次,得到的点数依次记为a和b,则方程ax2+bx+1=0有实数解的概率是( ) A. B. C. D. 13.某中学为了加强艺术教育,促进学生全面发展,要求每名学生从音乐和美术中至少选择一门兴趣课,某班有50名学生,选择音乐的有21人,选择美术的有39人,从全班学生中随机抽取一人,那么这个人两种兴趣班都选择的概率是 . 14.一个盒子中装有1个黑球和2个白球,这3个球除颜色外完全相同.有放回地连续抽取2次,每次从中任意地取出1个球.计算下列事件的概率: (1)取出的两个球都是白球; (2)第一次取出白球,第二次取出黑球; (3)取出的两个球中至少有一个白球. 15.一个三位数,它的个、十、百位上的数字依次为x,y,z,当且仅当y>x,y>z时,称这样的数为“凸数”(如243).现从集合{5,6,7,8}中取出三个不同的数组成一个三位数,则这个三位数是“凸数”的概率为( ) A. B. C. D. 16.已知关于x的二次函数f(x)=ax2-bx+1,设集合P={1,2,3},Q={-1,1,2,3,4},分别从集合P和Q中随机取一个 ... ...