2.4二次函数的应用 【题型1】解决面积问题 3 【题型2】商品利润问题 5 【题型3】固定型抛物线问题 6 【题型4】运动型抛物线问题 7 【知识点1】根据实际问题列二次函数关系式 根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定. ①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是二次函数还是其他函数,再利用待定系数法求解相关的问题. ②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式. 1.(2023 大埔县开学)若正方形的边长为6,边长增加x,面积增加y,则y关于x的函数解析式为( ) A.y=(x+6)2B.y=x2+62C.y=x2+6xD.y=x2+12x 2.(2023秋 巧家县校级月考)某商品现在的售价为每件50元,每星期可卖出90件.市场调查发现:每降价1元,每星期可多卖出15件,已知商品的进价为每件30元,设每件降价x元,每星期售出商品的利润为y元,则y与x的函数关系式为( ) A.y=-15x2+210x+1800B.y=(50-x)(90+15x)-30xC.y=-15x2-210x+1800D.y=(20-x)(90-15x) 【知识点2】二次函数的应用 (1)利用二次函数解决利润问题 在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围. (2)几何图形中的最值问题 几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论. (3)构建二次函数模型解决实际问题 利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题. 1.(2024 宝安区模拟)古代拱桥的建筑形状类似于抛物线,某拱桥的形状可以看作是一个二次函数y=ax2-4x+3,若关于x的一元二次方程ax2-4x+2=0有两个不相等的实数根,那么a的取值范围是( ) A.a<2B.a>2C.a<2且a≠0D.a≤2且a≠0 【知识点3】二次函数综合题 (1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项. (2)二次函数与方程、几何知识的综合应用 将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题 从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义. 【题型1】解决面积问题 【典型例题】用长为12m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.设CD=DE=x m,五边形ABCDE的面积为S m2.则S的最大值为( ) A.12 B.12 C.24 D.没有最大值 【举一反三1】如图,正方形ABCD的边长为10,以正方形的顶点A、B、C、D为圆心画四个全等的圆.若圆的半径为x,且0<x≤5,阴影部分的面积为y,则能反映y与x之间函数关系的大致图象是( ... ...
~~ 您好,已阅读到文档的结尾了 ~~