
中小学教育资源及组卷应用平台 26.4概率在遗传学中的应用 一、单选题 1.如图,一个均匀的转盘被等分成4个相同的扇形,自由转动这个转盘,当转盘停止时,指针落在阴影部分区域的概率是( ) A. B. C. D. 2.如果小球在如图所示的地板上自由地滚动,并随机的停留在某块方砖上,那么它最终停留在阴影区域的概率是( ) A. B. C. D. 3.某商场为吸引顾客设计了如图所示的自由转盘,当指针指向阴影部分时,该顾客可获奖品一份,那么该顾客获奖的概率为( ) A. B. C. D. 4.如图,在的正方形网格中,已有两个小正方形被涂黑,再将图中剩余的小正方形中任意一个涂黑,则三个被涂黑的小正方形能构成轴对称图形的概率是( ) A. B. C. D. 5.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是( ) A. B. C. D. 6.在一个不透明的口袋中装有个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在附近,则口袋中白球可能有( ) A.个 B.个 C.个 D.个 7.如图, ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向 ABCD内部投掷飞镖(每次均落在 ABCD内,且落在 ABCD内任何一点的机会均等)恰好落在阴影区域的概率为( ) A. B. C. D. 8.如图,将一枚飞镖任意投掷到正方形镖盘内,若飞锤落在镖盘内各点的机会相等,则飞镖落在阴影区域的概率为( ) A. B. C. D. 9.如图, 小球从A人口往下落, 在每个交叉口都有向左或向右两种可能, 且可能性相等, 则小球从E出口落出的概率是( ) A. B. C. D. 10.如图1所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为的长方形,将不规则图案围起来,然后在适当位置随机朝长方形区域扔小球,并记录小球落在不规则图案上的次数(小球扔在界线上或长方形区域外不计入试验结果),他将若干次有效试验的结果绘制成了图2所示的折线统计图,由此可估计不规则图案的面积大约是( ) A. B. C. D. 11.我国魏晋时期的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图,若,,现随机向该图形内掷一枚小针,则针尖落在阴影区域内的概率( ). A. B. C. D. 12.下图是由 16 个相同的小正方形和 4 个相同的大正方形组成的图形,在这个图形内任取一点 , 则点 落在阴影部分的概率为( ) A. B. C. D. 二、填空题 13.正方形的边长为2,分别以四个顶点为圆心,以1为半径作弧形成如图所示的封闭图形(阴影部分).在正方形上做随机投针试验,针头落在阴影部分的概率是 . (用含的式子表示). 14.如图,正方形内接于,随机向该圆形区域投掷飞镖1次,假设飞镖投中圆形区域中的每一点是等可能的(若投中边界或没有投中,则重投1次),则飞镖恰好投中在正方形区域内的概率是 . 15.如图,是由四个直角边分别为3和4的全等的直角三角形拼成的“赵爽弦图”,小亮随机的往大正方形区域内投针一次,则针扎在阴影部分的概率是 . 16.如图,在方格纸中,随机撒一粒黄豆,落在阴影部分的概率是 . 17.如图,A,B,C为上的三个点,C为的中点,连接,,,,以C为圆心,长为半径的弧恰好经过点O,若要在圆内任取一点,则该点落在阴影部分的概率是 . 三、解答题 18.一个不透明的袋中装有分别标着汉字“杭”、“州”、“亚”、“运”的四个小球,除标注的汉字不同外,小 ... ...
~~ 您好,已阅读到文档的结尾了 ~~