
2026届中考数学二轮专题训练:四边形 知识点参考 1.多边形内角与外角 (1)多边形内角和定理:(n﹣2)?180° (n≥3且n为整数) 此公式推导的基本方法是从n边形的一个顶点出发引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形,这(n﹣2)个三角形的所有内角之和正好是n边形的内角和.除此方法之和还有其他几种方法,但这些方法的基本思想是一样的.即将多边形转化为三角形,这也是研究多边形问题常用的方法. (2)多边形的外角和等于360°. ①多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°. ②借助内角和和邻补角概念共同推出以下结论:外角和=180°n﹣(n﹣2)?180°=360°. 2.平行四边形的性质 (1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形. (2)平行四边形的性质: ①边:平行四边形的对边相等. ②角:平行四边形的对角相等. ③对角线:平行四边形的对角线互相平分. (3)平行线间的距离处处相等. (4)平行四边形的面积: ①平行四边形的面积等于它的底和这个底上的高的积. ②同底(等底)同高(等高)的平行四边形面积相等. 3.平行四边形的判定与性质 平行四边形的判定与性质的作用 平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的. 运用定义,也可以判定某个图形是平行四边形,这是常用的方法,不要忘记平行四边形的定义,有时用定义判定比用其他判定定理还简单. 凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题. 4.菱形的性质 (1)菱形的性质 ①菱形具有平行四边形的一切性质; ②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; ④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线. (2)菱形的面积计算 ①利用平行四边形的面积公式. ②菱形面积=ab.(a、b是两条对角线的长度) 5.菱形的判定与性质 (1)依次连接四边形各边中点所得的四边形称为中点四边形.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形. (2)菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形,对角线相等的四边形的中点四边形定为菱形.) (3)菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法. (4)正方形是特殊的菱形,菱形不一定是正方形,所以,在同一平面上四边相等的图形不只是正方形. 6.矩形的性质 (1)矩形的定义:有一个角是直角的平行四边形是矩形. (2)矩形的性质 ①平行四边形的性质矩形都具有; ②角:矩形的四个角都是直角; ③边:邻边垂直; ④对角线:矩形的对角线相等; ⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点. (3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半. 7.矩形的判定 (1)矩形的判定: ①矩形的定义:有一个角是直角的平行四边形是矩形; ②有三个角是直角的四边形是矩形; ③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”) (2)①证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线 ... ...
~~ 您好,已阅读到文档的结尾了 ~~