2026届中考数学高频考点复习: 一次函数 考点回顾 1.一次函数的图象 (1)一次函数的图象的画法:经过两点(0,b)、(﹣,0)或(1,k+b)作直线y=kx+b. 注意:①使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.②一次函数的图象是与坐标轴不平行的一条直线(正比例函数是过原点的直线),但直线不一定是一次函数的图象.如x=a,y=b分别是与y轴,x轴平行的直线,就不是一次函数的图象. (2)一次函数图象之间的位置关系:直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到. 当b>0时,向上平移;b<0时,向下平移. 注意:①如果两条直线平行,则其比例系数相等;反之亦然; ②将直线平移,其规律是:上加下减,左加右减; ③两条直线相交,其交点都适合这两条直线. 2.正比例函数的图象 正比例函数的图像是经过坐标原点(0,0)和定点(1,k)两点的一条直线,它的斜率是k(k表示正比例函数与x轴的夹角大小),横、纵截距都为0,正比例函数的图像是一条过原点的直线. 3.一次函数的性质 一次函数的性质: k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降. 由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴. 4.正比例函数的性质 单调性 当k>0时,图像经过第一、三象限,从左往右上升,y随x的增大而增大(单调递增),为增函数;[1] 当k<0时,图像经过第二、四象限,从左往右下降,y随x的增大而减小(单调递减),为减函数. 对称性 对称点:关于原点成中心对称.[1] 对称轴:自身所在直线;自身所在直线的平分线. 5.一次函数图象与系数的关系 由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴. ①k>0,b>0 y=kx+b的图象在一、二、三象限; ②k>0,b<0 y=kx+b的图象在一、三、四象限; ③k<0,b>0 y=kx+b的图象在一、二、四象限; ④k<0,b<0 y=kx+b的图象在二、三、四象限. 6.一次函数图象上点的坐标特征 一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b). 直线上任意一点的坐标都满足函数关系式y=kx+b. 7.一次函数图象与几何变换 直线y=kx+b,(k≠0,且k,b为常数) ①关于x轴对称,就是x不变,y变成﹣y:﹣y=kx+b,即y=﹣kx﹣b; (关于X轴对称,横坐标不变,纵坐标是原来的相反数) ②关于y轴对称,就是y不变,x变成﹣x:y=k(﹣x)+b,即y=﹣kx+b; (关于y轴对称,纵坐标不变,横坐标是原来的相反数) ③关于原点对称,就是x和y都变成相反数:﹣y=k(﹣x)+b,即y=kx﹣b. (关于原点轴对称,横、纵坐标都变为原来的相反数) 8.待定系数法求一次函数解析式 待定系数法求一次函数解析式一般步骤是: (1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b; (2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组; (3)解方程或方程组,求出待定系数的值,进而写出函数解析式. 注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值. 9.一次函数与一元一次方程 一元一次方程可以通过做出一次函数来解决.一元一次方程 的根就是它所对应的一次函数 函数值为0时,自变量 的值.即一次函数图象与x轴交点的横坐标. 10.一次函数与一元一次不等式 (1)一次函数与一 ... ...
~~ 您好,已阅读到文档的结尾了 ~~