高一数学第一学期(人教A版)期末必会的31个题型 【题型1】集合的运算与性质 1.若集合,,则( ) A. B. C. D. 【详解】由题可知,,则, 2.设集合,,满足,则实数的取值范围是( ) A. B. C. D. 【详解】由题意知,要满足,则有,所以. 3.设集合,,若,则的取值范围是( ) A. B. C. D. 【详解】,,又, 则,解得,故的取值范围是. 【题型2】充分必要条件的判断与应用 1.已知,则“”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 【详解】由,解得或,所以“”是“”的充分不必要条件. 2.已知为实数,那么方程没有实数解是的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 【详解】若没有实数解,则,可得, 显然方程没有实数解是的充分不必要条件. 3.已知,,若是的充分不必要条件,则实数的取值范围是( ) A. B. C. D. 【详解】设集合,集合,若是的充分不必要条件, 所以是的真子集,可得, 4.已知,,则“α=β”是“sin2α=sin2β”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 解:因为,, 若α=β,则2α=2β且0<2α<π,0<2β<π,则sin2α=sin2β,故“α=β”是“sin2α=sin2β”的充分条件, 不妨取,此时sin2α=sin2β,但是α≠β,故“α=β”是“sin2α=sin2β”的不必要条件. 故“α=β”是“sin2α=sin2β”的充分不必要条件. 【题型3】命题 1.命题“”的否定是( ) A. B. C. D. 【详解】由题意得命题“”为全称量词命题, 则该命题的否定为:. 2.已知命题“,则为( ) A. B. C. D. 【详解】因为命题为“, 所以命题为“” 3.命题p:,,则是( ) A., B., C., D., 【详解】命题p:,是全称量词命题,其否定是存在量词命题, 所以是:,. 【题型4】不等式及其性质 1.下列说法正确的是( ) A.若,则 B.若,则 C.若,则 D.若,则 【详解】对于A选项,当时,,故A错误; 对于B选项,因为,所以,故B错误; 对于C选项,当,时,,故C错误; 对于D选项,,因为,所以,所以,故D正确. 2.下列命题是真命题的为( ) A.若,则 B.若,,则 C.若,则 D.若,,则 【详解】当,时,,故A错误; 当,,,时,,故B错误; 当时,可得,故C错误; 若,,则,故D正确. 3.若,则下列各式一定正确的是( ) A. B. C. D. 【详解】对于A,因为,不等式两边同时加或减去同一个数,不等号方向不变,所以,故A正确; 对于B,因为,不等式两边同时乘(或除以)同一个负数,不等号方向改变,所以,故B错误; 对于C,取,则此时,故C错误; 对于D,若,此时,故D错误. 故选:A. 【题型5】基本不等式 1.设,且,则( ) A. B. C. D. 【详解】对于A,由,因,故得,即A错误; 对于B,由两边同除以,可得 ,故B错误; 对于C,因,则,当且仅当时取等号,因,故得,即C正确; 对于D,由,因,故得,故D错误. 2.已知,,,则的最小值为( ) A. B.6 C. D. 【详解】易知, 当且仅当时,等号成立. 故选:D 3.设,则下列不等式中不成立的是( ) A. B. C. D. 【详解】由,则,故, 综上,有,B对,A、C、D错. 故选:ACD 4.已知,下列不等式正确的有( ) A. B. C. D. 【详解】对于选项A:因为,,当且仅当时取等号,故A正确。 对于选项B:因为,所以,当且仅当时取等号,故B正确. 对于选项C:当时,,故C错误. 对于选项D:,当且仅当,即时取等号.故D正确. 5.若正实数满足,则( ) A.的最大值为 B.的最大值为1 C.的最小值为4 D.的最小值为9 【详解】对于A,, 当且仅当时取等号,故A正确 ... ...
~~ 您好,已阅读到文档的结尾了 ~~