(
课件网) 7.3.2 离散型随机变量的方差 1.理解离散型随机变量的方差及标准差的概念. 2.能计算简单离散型随机变量的方差,并能解决一些实际问题. 学 习 目 标 新知学习 探究 PART 01 第一部分 甲、乙两位同学射击情况如下表所示: 甲同学击中目标靶的环数X1的分布列为 X1 5 6 7 8 9 10 P 0.03 0.09 0.20 0.31 0.27 0.10 乙同学击中目标靶的环数X2的分布列为 X2 5 6 7 8 9 P 0.01 0.05 0.20 0.41 0.33 思考1 要从甲、乙两名同学中挑出一人代表班级参加射击比赛.根据平均射击水平,能挑选出哪位同学参赛? 提示:E(X1)=8,E(X2)=8,因为两个均值相等,两名同学的射击水平一样,无法挑选参赛选手. 思考2 试想用什么指标区分甲、乙两名同学的射击水平? 提示:可以考虑谁的成绩稳定或不稳定,集中或分散的指标来区分. 一 离散型随机变量的方差 1.定义 设离散型随机变量X的分布列如表所示. X x1 x2 … xn P p1 p2 … pn 则称D(X)=(x1-E(X))2p1+(x2-E(X))2p2+…+(xn-E(X))2pn= _____为随机变量X的方差,有时也记为Var(X),并称_____ 为随机变量X的标准差,记为σ(X). 2.意义 随机变量的方差和标准差都可以度量随机变量取值与其均值的偏离程度,反映了随机变量取值的_____.方差或标准差越小,随机变量的取值越_____;方差或标准差越大,随机变量的取值越_____. 散程度 集中 分散 (对接教材例5)袋中有形状、大小完全相同的3个球,编号分别为1,2,3.用X表示取出的2个球中的最大号码,有放回地从袋中取两次,每次取1个球,求X的方差. [跟踪训练1] 小王去自动取款机取款,发现自己忘记了6位密码的最后一位数字,他决定从0~9中不重复地随机选择1个进行尝试,直到输对密码,或者输错三次银行卡被锁定为止.设小王尝试输入该银行卡密码的次数为X,求X的分布列、均值及方差. 二 离散型随机变量的方差的性质 1.D(X+b)=_____; 2.D(aX)=_____; 3.D(aX+b)=_____; 4.D(X)=E(X2)-(E(X))2. D(X) a2D(X) a2D(X) 已知X的分布列为 (1)求X2的分布列及均值; (2)计算X的方差; (3)若Y=4X+3,求Y的均值和方差. 【解】 因为Y=4X+3,所以E(Y)=4E(X)+3=2,D(Y)=42D(X)=11. 【变式探究】 (综合变式)在本例中,已知X的分布列为 X -1 0 1 P a b c √ X2 0 1 P b a+c 求随机变量Y=aX+b方差的方法 (1)定义法:方差的计算需要一定的运算能力,一般是先求Y的分布列,再求其均值,最后求方差,在随机变量X2的均值比较容易计算的情况下,运用D(X)=E(X2)-(E(X))2不失为一种比较实用的方法. (2)性质法:若变量间存在Y=aX+b的关系,应注意均值与方差性质的运用,即应用公式E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)求解. [跟踪训练2] 已知随机变量X的分布列为 (1)求D(X)的值; 三 离散型随机变量方差的实际应用 甲、乙两名射手在一次射击比赛中得分为两个相互独立的随机变量ξ与η,且ξ,η的分布列为 ξ 1 2 3 P a 0.1 0.6 η 1 2 3 P 0.3 b 0.3 (1)求a,b的值; 【解】 由离散型随机变量的分布列的性质可知a+0.1+0.6=1,所以a=0.3. 同理0.3+b+0.3=1,所以b=0.4. (2)计算ξ,η的均值与方差,并以此分析甲、乙技术水平. 【解】 E(ξ)=1×0.3+2×0.1+3×0.6=2.3,E(η)=1×0.3+2×0.4+3×0.3=2, D(ξ)=(1-2.3)2×0.3+(2-2.3)2×0.1+(3-2.3)2×0.6=0.81, D(η)=(1-2)2×0.3+(2-2)2×0.4+(3-2)2×0.3=0.6. 由于E(ξ)>E(η),说明在一次射击中,甲的平均得分比乙高,但D(ξ)>D(η),说明甲得分的稳定性不如乙,因此甲、乙两人技术水平都不够全面,各有优势与劣势. 随机变量的均值反映 ... ...