课件编号6351196

2020届高三数学(理)高考一轮复习讲义,习题,补习资料:8.9.2 圆锥曲线的综合应用

日期:2024-05-02 科目:数学 类型:高中试卷 查看:98次 大小:312925Byte 来源:二一课件通
预览图 0
习题,综合,圆锥曲线,8.9.2,资料,补习
    第二课时 圆锥曲线的综合应用 考点一 最值范围问题|  (2019·高考浙江模拟)已知椭圆+y2=1上两个不同的点A,B关于直线y=mx+对称. (1)求实数m的取值范围; (2)求△AOB面积的最大值(O为坐标原点). (1)最值问题的求解方法: ①建立函数模型,利用二次函数、三角函数的有界性求最值或利用导数法求最值. ②建立不等式模型,利用基本不等式求最值. ③数形结合,利用相切、相交的几何性质求最值. (2)求参数范围的常用方法: ①函数法:用其他变量表示该参数,建立函数关系,利用求函数值域的方法求解. ②不等式法:根据题意建立含参数的不等式,通过解不等式求参数范围. ③判别式法:建立关于某变量的一元二次方程,利用判别式Δ求参数的范围. ④数形结合法:研究该参数所表示的几何意义,利用数形结合思想求解.   1.(2019·宁波模拟)如图,抛物线C的顶点为O(0,0),焦点在y轴上,抛物线上的点(x0,1)到焦点的距离为2. (1)求抛物线C的标准方程; (2)过直线l:y=x-2上的动点P(除(2,0))作抛物线C的两条切线,切抛物线于A,B两点. ①求证:直线AB过定点Q,并求出点Q的坐标; ②若直线OA,OB分别交直线l于M,N两点,求△QMN的面积S的取值范围. 考点二 定点最值问题|  已知抛物线C:y2=2px(p>0)的焦点F(1,0),O为坐标原点,A,B是抛物线C上异于O的两点. (1)求抛物线C的方程; (2)若直线OA,OB的斜率之积为-,求证:直线AB过x轴上一定点. (1)解决定点问题的关键就是建立直线系或者曲线系方程,要注意选用合适的参数表达直线系或者曲线系方程,如果是双参数,要注意这两个参数之间的相互关系. (2)解决圆锥曲线中的定值问题的基本思路很明确,即定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积、比例关系等,其不受变化的量所影响的一个值就是要求的定值.解决这类问题的关键就是引进参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.    2.已知椭圆+=1(a>b>0)的左焦点F1(-1,0),长轴长与短轴长的比是2∶. (1)求椭圆的方程; (2)过F1作两直线m,n交椭圆于A,B,C,D四点,若m⊥n,求证:+为定值. 考点三 探索存在性与证明问题|  (2019·高考北京模拟)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M. (1)求椭圆C的方程,并求点M的坐标(用m,n表示); (2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标;若不存在,说明理由. 解决存在性问题注意事项 存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在. (1)当条件和结论不唯一时要分类讨论. (2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径. 3.(2019·高考安徽模拟)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为. (1)求E的离心率e; (2)设点C的坐标为(0,-b),N为线段AC的中点,证明:MN⊥AB. A组 考点能力演练 1.如图,已知抛物线C:y2=2px(p>0),焦点为F,过点G(p,0)作直线l交抛物线C于A,M两点,设A(x1,y1),M(x2,y2). (1)若y1y2=-8,求抛物线C的方程; (2)若直线AF与x轴不垂直,直线AF交抛物线C于另一点B,直线BG交抛物线C于另一点N.求证:直线AB与直线MN斜率之比为定值. 2.设F是椭圆C:+=1(a>b>0)的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|. (1 ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~