ID: 10689998

人教新课标A版选修1-1 第二章 圆锥曲线与方程 单元练习(Word含答案解析)

日期:2026-01-26 科目:数学 类型:高中试卷 查看:62次 大小:111981B 来源:二一课件通
预览图 1/5
人教,单元,解析,答案,Word,练习
  • cover
人教新课标A版选修1-1 第二章 圆锥曲线与方程 一、单选题 1.(2021高三上·洛南月考)椭圆 ( )的左右焦点分别为 , ,过 垂直于 轴的直线交椭圆于 , 两点,且 ,求椭圆的离心率为( ) A. B. C. D. 2.(2019高二下·嘉兴期中)双曲线 的渐近线方程为是( ) A. B. C. D. 3.(2020高二上·黄陵期末)已知椭圆 的左焦点 ,过点 作倾斜角为 的直线与圆 相交的弦长为 ,则椭圆的离心率为( ) A. B. C. D. 4.(2020·厦门模拟)已知双曲线 的右支与抛物线 相交于 两点,记点 到抛物线焦点的距离为 ,抛物线的准线到抛物线焦点的距离为 ,点 到抛物线焦点的距离为 ,且 构成等差数列,则双曲线的渐近线方程为( ) A. B. C. D. 5.(2021·湖北模拟)设椭圆 的一个焦点为 ,则对于椭圆上两动点 , , 周长的最大值为( ) A. B. 6 C. D. 8 6.(2021·雅安模拟)函数 的图象恒过定点A,若点A在双曲线 上,则m-n的最大值为 ( ) A. 6 B. 4 C. 2 D. 1 7.(2020·晋城模拟)已知双曲线 的两个顶点分别为 , , 的坐标分别为 , ,且四边形 的面积为 ,四边形 内切圆的周长为 ,则 的方程为( ) A. B. 或 C. D. 或 8.(2019高二下·大庆期末)“ ”是双曲线 的离心率为 ( ) A. 充要条件 B. 必要不充分条件 C. 即不充分也不必要条件 D. 充分不必要条件 9.(2019高三上·静海月考)过抛物线 焦点 的直线与双曲线 的一条渐近线平行,并交抛物线于 两点,若 且 ,则 的值为( ) A. 8 B. C. D. 4 10.(2019高二上·大庆月考)下列三图中的多边形均为正多边形,M、N是所在边上的中点,双曲线均以图中的F1、F2为焦点,设图①②③中的双曲线的离心率分别为e1、e2、e3 , 则( ) A. e1>e2>e3 B. e1<e2<e3 C. e1=e3<e2 D. e1=e3>e2 11.(2020高三上·泸县期末)椭圆与双曲线共焦点 、 ,它们的交点 对两公共焦点 、 的张角为 ,椭圆与双曲线的离心率分别为 、 ,则( ) A. B. C. D. 二、填空题 12.(2020高二下·宣城期末)双曲线 的一条渐近线的倾斜角为60°, 、 为左、右焦点,若直线 与双曲线 交于点 ,则 的周长为 . 13.(2019高二上·漳平月考)已知离心率为 的椭圆 : 和离心率为 的双曲线 : 有公共的焦点 , ,P是它们在第一象限的交点,且 ,则 的最小值为_____. 14.(2020高三上·浙江月考)抛物线 的焦点在直线 : 上,则 _____,若焦点在 轴上的双曲线的一条渐近线与直线 平行,则双曲线的离心率为_____. 15.(2021·辽宁模拟)汽车前照灯主要由光源、反射镜及配光片三部分组成,其中经过光源和反射镜顶点的剖面轮廓为抛物线,而光源恰好位于抛物线的焦点处,这样光源发出的每一束光线经反射镜反射后均可沿与抛物线对称轴平行的方向射出.某汽车前照灯反射镜剖面轮廓可表示为抛物线 .在平面直角坐标系中,设抛物线 ,抛物线的准线记为 ,点 ,动点P在抛物线上运动,若点P到准线 的距离等于 ,且满足此条件的点P有且只有一个,则 16.(2019高二上·大兴期中)椭圆 上点的纵坐标的取值范围是 . 17.(2019高二上·大庆月考)已知双曲线过点 ,且渐近线方程为 ,则该双曲线的标准方程为_____. 18.(2021高二下·普宁期末)已知点P是地物线 上的一个动点,则点P到直线 和 的距离之和的最小值为 . 19.(2020高二上·常德月考)长方体 中, , , , 为该长方体侧面 内(含边界)的动点,且满足 ,则四棱锥 体积的取值范围是 . 20.(2019高二下·上海月考)双曲线 的左、右焦点分别为 、 ,点 ( )在双曲线右支上,且满足 , ,则 的值为_____ 三、解答题 21.(2021高二下·资阳期末)解答下列两个小题: (1)双曲线 : 离心率为 ,且点 在双曲线 上,求 的方程; (2)双曲线 实轴长为2,且双曲线 与椭圆 的焦点相同,求双曲线 的 ... ...

~~ 您好,已阅读到文档的结尾了 ~~