(
课件网) 第十四章 整式的乘法与因式分解 14.2 乘法公式 14.2.2.2 添括号 学习导航 学习目标 新课导入 概念剖析 典型例题 当堂检测 课堂总结 3.能够灵活运用添括号法则对式子进行变形,并综合利用乘法 公式进行计算.(重点) 1.通过了解去括号法则和添括号法则之间的联系,理解添括号 法则; 一、学习目标 2.掌握添括号法则中的符号变换,并能用去括号法则检验; 二、新课导入 回顾 平方差公式:(a+b)(a-b)= ; 完全平方公式:(a+b)2= , (a-b)2= . a2-b2 a2+2ab+b2 a2-2ab+b2 二、新课导入 俗话说:人靠衣装马靠鞍,干净得体的着装能给人留下良好的形象. 在一个式子中,如果我们把括号比作式子的外套,那么前面我们已经学过 了怎么给式子脱下外套(去括号法则),这节课我们将学习如何给式子穿上 外套(添括号法则). a b c 三、概念剖析 运用乘法公式计算时,有时候式子不能直接利用公式计算;比如(a+b+c)2 这个式子的计算. 如果要运用完全平方公式计算,我们可以把a+b或者b+c看作一个整体,那么这时就要给a+b或者b+c添加括号了. 三、概念剖析 前面我们已经学过去括号法则,你们还记得吗? a+(b+c)= ; a-(b+c)= . 那么反过来,就可以得到添括号法则: a+b+c= ; a-b-c= . 思考:你能用语言描述添括号法则吗? a+b+c a-b-c a+(b+c) a-(b+c) 三、概念剖析 添括号法则 添括号时:1.如果括号前面是正号,括到括号里的各项都不变号; 2.如果括号前面是负号,括到括号里的各项都改变符号. 用字母表示为: 归纳: a+b+c=a+(b+c); a-b-c=a-(b+c). 四、典型例题 解: (1)3a-2b+c =+( ) 3a-2b+c =-( ) 总结:+( 照搬式子 );-( 照搬式子,然后式子每项变号 ). 分析:根据添括号的法则可知,括号前带有“+”,括号内各项符号都不变; 括号前“+”,括号内各项符号都改变. 例1.按要求,将多项式 3a-2b+c 添上括号. (1)把它分别放在前面带有“+”号和“-”号的括号里. (2)把后两项放在前面带有“-”号的括号里. 3a-2b+c -3a +2b -c (2)3a-2b+c =3a-( ) 2b-c 【当堂检测】 1.在等号右边的括号内填上适当的项: (1) a+b+c = a+( ); (2) a-b-c = a -( ) ; (3) a-b+c = a-( ); (4) a+b+c = a -( ) . b+c -b-c b+c b-c 思考:你会用去括号法则检验吗? 检验:(1) a+(b+c) = a+b+c; (2) a-(b+c) = a-b-c; (3) a-(b-c) = a-b+c; (4) a-(-b-c) = a+b+c . 故填入的答案正确. 2.下列等号右边添的括号正确吗?若不正确,需怎样改正. (1)2x2-3x+6=+(2x2+3x+6) (2)2x2-3x+6=-(-2x2+3x-6) (3)a-2b-3c=a-(2b+3c) (4)m-n+a-b=m-(n+a+b) 【当堂检测】 × √ × √ 2x2-3x+6=+(2x2-3x+6) m-n+a-b=m-(n-a+b) 四、典型例题 例2.运用乘法公式计算: (1)(x+2y-3)(x-2y+3) (2)(a+b+c)2 解: (1)原式=[x+(2y-3)][x-(2y-3)] =x2-(2y-3)2 添括号 分析:这里式子都有3项,无法直接套用直接所学的乘法公式计算, 故我们可以通过添括号将其中两项变成一个整体,再套用公式计算. 平方差公式 =x2-(4y2-12y+9) 完全平方公式 =x2-4y2+12y-9 去括号 四、典型例题 (2)(a + b +c ) 2 = [ (a+b) +c ]2 = (a+b)2 +2(a+b)c +c2 = a2+2ab +b2 +2ac +2bc +c2 = a2+b2+c2 +2ab+2bc +2ac 添括号 完全平方公式 完全平方公式、乘法分配律 按最高项次数排序 四、典型例题 总结:三数和的平方公式: (a+b+c)2=a2+b2+c2+2ab+2bc+2ac. c2 a2 ab ac ab b2 bc bc ac a b c a b c 3.运用乘法公式计算. (1)(a+2b-1)2 (2)(2x+y+z)(2x-y-z) 【当堂检测】 解: (1)原式= [ (a+2b) -1 ]2 = (a+2b)2 -2(a+2b) +1 = a2+4ab+4b2-2a-4b+1 = a2+4b2+4ab-2a-4b+1 (2)原式=[2x+(y+z)][2x-(y+z)] =4x2-(y+z)2 =4x2-(y2+2yz+z2) =4x2-y2-12yz-z2 4. 当x -xy=18,x ... ...