ID: 20336120

第10章二元一次方程组(单元测试基础卷)(含解析) 2023-2024学年数学七年级下册苏科版

日期:2024-12-26 科目:数学 类型:初中试卷 查看:82次 大小:536810B 来源:二一课件通
预览图 1/5
下册,七年级,数学,学年,2023-2024,解析
  • cover
第10章 二元一次方程组(单元测试·基础卷) 【要点回顾】 【要点1】二元一次方程组的相关概念 1. 二元一次方程的定义 定义:方程中含有两个未知数(一般用和),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 2.二元一次方程的解 定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 3. 二元一次方程组的定义 定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数. 4. 二元一次方程组的解 定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 【要点2】二元一次方程组的解法 1.解二元一次方程组的思想 2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程: ①从方程组中选定一个系数比较简单的方程进行变形,用含有(或)的代数式表示(或),即变成(或)的形式; ②将(或)代入另一个方程(不能代入原变形方程)中,消去(或),得到一个关于(或)的一元一次方程; ③解这个一元一次方程,求出(或)的值; ④把(或)的值代入(或)中,求(或)的值; ⑤用“”联立两个未知数的值,就是方程组的解. (2)用加减消元法解二元一次方程组的一般过程: ①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式; ②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值; ④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“”联立在一起即可. 【要点3】实际问题与二元一次方程组 【要点4】三元一次方程组 1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组. 2.三元一次方程组的解法 解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是: (1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组; (2)解这个二元一次方程组,求出两个未知数的值; (3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程; (4)解这个一元一次方程,求出最后一个未知数的值; (5)将求得的三个未知数的值用“{”合写在一起. 3. 三元一次方程组的应用 列三元一次方程组解应用题的一般步骤: (1)弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数; (2)找出能够表达应用题全部含义的相等关系; (3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; (4)解这个方程组,求出未知数的值; (5)写出答案(包括单位名称). 一、单选题(本大题共10小题,每小题3分,共30分) 1.若是关于x 、y的二元一次方程ax-2y=1的解,则a的值为( ) A.3 B.5 C.-3 D.-5 2.小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( ) A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=8 3.由可以得到用x表示y的 ... ...

~~ 您好,已阅读到文档的结尾了 ~~