ID: 21735890

6.2.2 离散型随机变量的分布列 教学设计

日期:2024-11-24 科目:数学 类型:高中教案 查看:18次 大小:427295B 来源:二一课件通
预览图 1/2
6.2.2,离散型,随机,变量,布列,教学设计
  • cover
离散型随机变量的分布列 教学目标: 1:会求出某些简单的离散型随机变量的概率分布。 2:认识概率分布对于刻画随机现象的重要性。 教学重点:离散型随机变量的分布列的概念 教学难点:求简单的离散型随机变量的分布列 授课类型:新授课 课时安排:2课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 若是随机变量,是常数,则也是随机变量 并且不改变其属性(离散型、连续型) 请同学们阅读课本P5-6的内容,说明什么是随机变量的分布列? 二、讲解新课: 1. 分布列:设离散型随机变量ξ可能取得值为 x1,x2,…,x3,…, ξ取每一个值xi(i=1,2,…)的概率为,则称表 ξ x1 x2 … xi … P P1 P2 … Pi … 为随机变量ξ的概率分布,简称ξ的分布列 2. 分布列的两个性质:任何随机事件发生的概率都满足:,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: ⑴Pi≥0,i=1,2,…; ⑵P1+P2+…=1. 对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即 3.两点分布列: 例1.在掷一枚图钉的随机试验中,令 如果针尖向上的概率为,试写出随机变量 X 的分布列. 解:根据分布列的性质,针尖向下的概率是() .于是,随机变量 X 的分布列是 ξ 0 1 P 像上面这样的分布列称为两点分布列. 两点分布列的应用非常广泛.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.如果随机变量X的分布列为两点分布列,就称X服从两点分布 ( two一point distribution),而称=P (X = 1)为成功概率. 两点分布又称0一1分布.由于只有两个可能结果的随机试验叫伯努利( Bernoulli ) 试验,所以还称这种分布为伯努利分布. , , ,. 4. 超几何分布列: 例 2.在含有 5 件次品的 100 件产品中,任取 3 件,试求: (1)取到的次品数X 的分布列; (2)至少取到1件次品的概率. 解: (1)由于从 100 件产品中任取3 件的结果数为,从100 件产品中任取3件, 其中恰有k 件次品的结果数为,那么从 100 件产品中任取 3 件,其中恰有 k 件次品的概率为 。 所以随机变量 X 的分布列是 X 0 1 2 3 P (2)根据随机变量X 的分布列,可得至少取到 1 件次品的概率 P ( X≥1 ) = P ( X = 1 ) + P ( X = 2 ) + P ( X = 3 ) ≈0.138 06 + 0. 005 88 + 0. 00006 = 0. 144 00 . 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X件次品数,则事件 {X=k}发生的概率为 , 其中,且.称分布列 X 0 1 … P … 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布( hypergeometriC distribution ) . 例 3.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率. 解:设摸出红球的个数为X,则X服从超几何分布,其中 N = 30 , M=10, n=5 .于是中奖的概率 P (X≥3 ) = P (X =3 ) + P ( X = 4 )十 P ( X = 5 ) =≈0.191. 思 ... ...

~~ 您好,已阅读到文档的结尾了 ~~