第十二章全等三角形单元练习2024-2025学年八年级上册数学人教版 一、选择题(本大题共10个小题,每小题3分,共30分、在每小题列出的四个选项中,只有一项符合题意) 1. 下列叙述中错误的是 ( ) A.能够完全重合的图形称为全等形 B.全等形的形状和大小都相同 C.所有正方形都是全等形 D.形状和大小都相同的两个图形是全等形 2. 如图12-Z-1,△ABC≌△A'B'C',边 B'C'过点 A 且平分∠BAC交BC 于点D,∠B=26°,∠CDB'=94°,则∠C'的度数为 ( ) A.34° B.40° C.45° D.60° 3. 如图12-Z-2. AB∥CD.以点 B为圆心,小于 DB 的长为半径作圆弧,分别交 BA,BD于点E、F,再分别以点 E. F 为圆心,大于 的长为半径作圆弧,两弧交于点 G,作射线 BG 交CD 于点 H.若∠D=116°,则∠DHB的大小为 ( ) A.8° B.16° C.32° D.64° 4. 要测量圆形工件的外径,工人师傅设计了如图12-Z-3所示的卡钳,O为卡钳两柄交点,且有OA=OB=OC=OD.若圆形工件恰好通过卡钳AB,则此工件的外径必是CD的长,其中的依据是全等三角形的判定方法( ) A. SSS B. SAS C. ASA D. AAS 5. 已知:如图12-Z-4,在△ABC中. AB=AC.求证:∠B=∠C. 证明:如图,作 . 在△ABD和△ACD中, ∴△ABD≌△ACD.∴∠B=∠C. 其中,横线上应补充的内容是 ( ) A. BC边上的高AD B. BC边上的中线AD C.∠BAC的平分线AD D. BC边的垂直平分线AD 6. 如图 12-Z-5,在△ABC 和△CDE 中,点 B,D,C在一条直线上,已知∠ACB=∠E,AC=CE,添加以下条件后,仍不能判定 的是 ( ) A.∠A=∠DCE B. AB∥DE C. BC=DE D. AB=CD 7. 如图12-Z-6,已知∠AOB=25°,∠CPD=55°,分别以点O,P 为圆心,以同样长为半径作弧,交OA,OB于点E,F,交PC,PD于点M,N;以点N为圆心,以EF长为半径作弧,交弧MN 于点G,作射线 PG,则∠CPG的度数是( ) A.25° B.30° C.35° D.45° 8. 如图12-Z-7,已知AB+AC=18,O为∠ABC与∠ACB的平分线的交点,且OD⊥BC于点 D.若OD=3,则四边形 ABOC 的面积是 ( ) A.36 B.27 C.20 D.18 9. 如图12-Z-8,△AMC与△BMD都是等腰三角形,MA=MC,MB=MD,且△AMC≌△BMD,BC,AD交于点E,点 A,M,B 在同一条直线上.若∠CMD=α,∠AEB=β,则α和β之间的数量关系为 ( ) A.2β-α=180° B.β-α=60° C.α+β=180° D.β=2α 10. 如图12-Z-9,AB=4cm,AC=BD=3cm,∠CAB=∠DBA,点 P 在线段AB 上以1 cm/s的速度由点 A 向点B 运动,同时,点 Q 在线段 BD 上由点B 向点D 运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为t(s),若存在某一时刻使△ACP 与△BPQ全等,则点 Q 的运动速度为 ( ) A.0. 5cm /s B.1 cm/s C.0. 5cm /s或1. 5cm /s D.1 cm/s或1. 5cm /s 二、填空题(本大题共6个小题,每小题3分,共18分) 11. 如图12-Z-10,在平面直角坐标系中,△AOB≌△COD,则点 D 的坐标是 12. 如图12-Z-11,在 Rt△ABC中,∠B=90°,以顶点 C为圆心,适当长为半径画弧,分别交 AC,BC于点E,F,再分别以点 E,F为圆心,大于 的长为半径画弧,两弧交于点 P,作射线 CP 交AB 于点 D.若 BD=2,AC=8,则△ACD的面积为 . 如图12-Z-12,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的一个条件是 .(只需写出一个即可) 14. 在平面直角坐标系xOy中,已知点A,B的坐标分别为(2,0),(2,4),若以A,B,P为顶点的三角形与△ABO全等(点 P 不与点O 重合),则点 P 的坐标为 . 15. 如图12-Z-13,在△ABC中,AC=BC,∠C=40°,E 是△ABC内一点,且EA=EB,△ABC外一点D 满足BD=AC,且BE平分∠DBC,则∠BDE的度数为 . 16. 如图12-Z-14,DE⊥AB于点E,DF⊥AC于点F.若BD=CD,BE=CF,则有下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AC-AB=2BE.其中正确的是 .(填序号) 三、解答题(本大题共7 个小题,共52分) 17. (6分)如图12-Z-15,点 E,F 在线段BC 上,AB∥CD,∠A=∠D,BE=CF.求证:AE=DF. 18. (6分)如图12-Z-16、已知 ... ...
~~ 您好,已阅读到文档的结尾了 ~~