第二章达标检测试卷 (时间120分钟满分150分) 一、选择题(每小题3分,共36分) 1.不等式x-2≥1的解集是 ( ) A.x≥2 B.x≤2 C.x≥3 D.x≤3 2.若不等式ax>b的解集是x<,则a的取值范围是 ( ) A.a<0 B.a≤0 C.a>0 D.a≥0 3.不等式2(x+1)<3x的解集在数轴上表示为 ( ) A B C D 4.已知关于x的一次函数y=kx+b(k≠0)的图象过点(2,0),(0,-1),则不等式kx+b≥0的解集是( ) A.x≥2 B.x≤2 C.0≤x≤2 D.-1≤x≤2 5.不等式组 3x≥9,的整数解共有 ( ) x<5 A.1个 B.2个 C.3个 D.4个 6.不等式组 (x+1)≤2,的解集在数轴上表示为 ( ) x-3<3x+1 A B C D 7.在等腰三角形ABC中,AB=AC,其周长为20 cm,则AB边的取值范围是 ( ) A.1 cm
-36 D.a≥-36 10.已知关于x,y的方程组 2x-y=2k-3,的解中x与y的和不小于5,则k的取值范围是 ( ) x-2y=k A.k≥8 B.k>8 C.k≤8 D.k<8 11.如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x经过点A,则不等式2x3 15.如果关于x的不等式组 x>m-1,的解集是x>-1,那么m= . x>m+2 16.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了2次才停止,则x的取值范围是 . 三、解答题(共9小题,共98分) 17.(12分)解不等式与不等式组,并将解集在数轴上表示出来. (1)≥+1; (2) 2(x+1)≥x, +1>. 18.(8分)求不等式组 2(x-1)≤3x-1,① x-3<1-x②的整数解. 19.(10分)关于x的两个不等式①<1与②1-3x>0. (1)若两个不等式的解集相同,求a的值; (2)若不等式①的解都是②的解,求a的取值范围. 20.(10分)如果不等式组 9x-a≥0,① 8x-b<0②的整数解仅有1,2,3,那么满足这个不等式组的整数a,b各是什么数? 21.(10分)在平面直角坐标系中,点A(x,y)在第三象限,且x,y满足 x+y=-a-5, x-y=3a+1,当a为何整数时,不等式3ax-3a>1-x的解为x<1? 22.(12分)已知关于x,y的方程组 x-2y=m,①的解满足不等式组 3x+y≤0, 2x+3y=2m+4② x+5y>0, 求满足条件的m的整数值. 23.(12分)某医药公司要把药品运往外地,现有两种运输方式可供选择: 方式一:使用快递公司的邮车运输,装卸收费400元,另外每千米运输路程再加收4元; 方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每千米运输路程再加收2元. 你认为选用哪种运输方式较好,为什么? 24.(12分)2022年北京冬季奥运会和冬季残奥会备受关注,吉祥物“冰墩墩”“雪容融”随之大卖,购买4个“冰墩墩”和2个“雪容融”共需480元,购买3个“冰墩墩”和4个“雪容融”共需510元. (1)分别求出“冰墩墩”和“雪容融”的销售单价; (2)若每个“冰墩墩”的制作成本为60元,每个“雪容融”的制作成本为40元,准备制作两种吉祥物共100个,总成本不超过5 000元,且销售完该 ... ...