ID: 22996992

2025年九年级数学中考二轮复习专题复习特殊平行四边形的证明与计算(含答案)

日期:2025-05-18 科目:数学 类型:初中学案 查看:96次 大小:226842B 来源:二一课件通
预览图 1/5
复习,2025年,形的,答案,计算,证明
  • cover
中小学教育资源及组卷应用平台 2025年九年级数学中考二轮复习专题复习特殊平行四边形的证明与计算 1.在平行四边形ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF. (1)求证:四边形EBFD是矩形. (2)若AE=3,DE=4,DF=5,求证:AF平分∠DAB. 2.如图,点E是正方形ABCD的BC延长线上一点,连接ED,过点B作BF⊥ED交ED的延长线于点F,连接CF. (1)若∠ABF=30°,CE=4,求BF的长; (2)求证:BF+DF=CF. 3.如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF. (1)求证:△AEH≌△CGF; (2)试判断四边形EFGH的形状,并说明理由. (3)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由. 4.如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点. (1)求证:△ABM≌△CDN; (2)点G是对角线AC上的点,∠EGF=90°,求AG的长. 5.如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F. (1)求证:AE=BF; (2)若点E恰好是AD的中点,AB=2,求BD的值. 6.如图,在正方形ABCD中,点E是BC上的一点,点F是CD延长线上的一点,且BE=DF,连结AE、AF、EF. (1)求证:△ABE≌△ADF; (2)若AE=5,请求出EF的长. 7.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE. (1)求证:AE=BC; (2)若AB=3,CD=1,求四边形ABCE的面积. 8.如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF. (1)求证:△ABE≌△CDF; (2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由. 9.如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2. (1)求平行四边形ABCD的面积; (2)求证:BD⊥BC. 10.如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证: (1)AE⊥BF; (2)四边形BEGF是平行四边形. 11.如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD中点,连接OE.过点C作CF∥BD交OE的延长线于点F,连接DF. 求证:(1)△ODE≌△FCE; (2)四边形OCFD是矩形. 12.如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q. (1)求证:△PDE≌△QCE; (2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时, ①求证:四边形AFEP是平行四边形; ②请判断四边形AFEP是否为菱形,并说明理由. 13.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F. (1)求证:四边形DEBF是平行四边形; (2)当DE=DF时,求EF的长. 14.如图,AC=8,分别以A、C为圆心,以长度5为半径作弧,两条弧分别相交于点B和D.依次连接A、B、C、D,连接BD交AC于点O. (1)判断四边形ABCD的形状并说明理由; (2)求BD的长. 15.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2. (1)求线段CE的长; (2)若点H为BC边的中点,连接HD,求证:HD=HG. 16.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M. (1)求证:△AHF为等腰直角三角形. (2)若AB=3,EC=5,求EM的长. 17.如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=. (1)求证:四边形AECF是菱形; (2)求线段EF的长. 18.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上. (1)求证:BG= ... ...

~~ 您好,已阅读到文档的结尾了 ~~