ID: 23900863

5.2 第4课时 解一元一次方程(去分母) 教学课件 初中数学人教版七年级上册

日期:2025-09-20 科目:数学 类型:初中课件 查看:84次 大小:8707241B 来源:二一课件通
预览图 1/9
七年级,人教,数学,初中,教学课件,分母
  • cover
(课件网) 第五章 一元一次方程 5.2 解一元一次方程 第4课时 解一元一次方程 (去分母) 情 境 导 入 第4课时 解一元一次方程 (去分母) 去括号解一元一次方程的步骤 1.去括号 2.移项 3.合并同类项 4.系数化为1 4(x+14)=7(x+20). 解:4x+56=7x+140, 4x-7x=140-56, -3x=84, x=-28. 复习 解方程: 情境导入 新课探究 课堂小结 问题1 如图,翠湖在青山、绿水两地之间,距青山50 km,距绿水70 km.某天,一辆汽车匀速行驶,途径王家庄、青山、绿水三地的时间如表所示.王家庄距翠湖的路程有多远 绿水 70km 50km 王家庄 翠湖 青山 x km 地名 王家庄 青山 绿水 时间 10:00 13:00 15:00 解:设王家庄距翠湖的路程为x km.列得方程 问题2 你还能列出得其他方程吗? 问题3 这些方程与以前学过的方程比较,有何特点?如何解这些方程? 探究 情境导入 新课探究 课堂小结 去掉分母 探究 未知 已知 如何解? 5(x-50)=3(x+70) 新 课 探 究 第4课时 解一元一次方程 (去分母) 2. 去分母时要注意什么问题 1. 若使方程的系数变成整系数方程,方程两边应该同乘以什么数 解方程: (1)这个方程中各分母的最小公倍数是10,方程两边乘10. (2)去分母时要注意等号两边的每一项都要乘分母的最小公倍数,一定注意不含分母的项(常数项)不要漏乘. 探究 解方程: 方程两边乘10,于是方程左边变为 方程右边变为什么?你具体算算. 探究 新课探究 情境导入 课堂小结 系数化为1 去分母(方程两边同乘各分母的最小公倍数) 移项 合并同类项 去括号 探究 5(3x+1)-10×2=(3x-2)-2(2x+3) 15x+5-20=3x-2-4x-6 15x-3x+4x=-2-6-5+20 16x=7 x= 小心漏乘,记得添括号! 新课探究 情境导入 课堂小结 1.去分母时,应在方程的左、右两边乘以分母的 ; 注意: 最小公倍数 2.去分母的依据是 ,去分母时不能漏乘 ; 等式的性质2 常数项 3.要把分子(如果是一个多项式)作为一个整体加上括号. 解一元一次方程的步骤: 移项 合并同类项 系数化为1 去括号 去分母 通过这些步骤可以使以x为未知数的方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律. 总结归纳 新课探究 情境导入 课堂小结 例 解下列方程: 解:去分母(方程两边乘4),得 2(x+1) -4 = 8+ (2-x). 去括号,得 2x+2-4 = 8+2-x. 移项,得 2x+x = 8+2-2+4. 合并同类项,得 3x = 12. 系数化为1,得 x = 4. 解:去分母(方程两边乘6),得 18x+3(x-1) =18-2 (2x-1). 去括号,得 18x+3x-3 =18-4x +2. 移项,得 18x+3x+4x =18 +2+3. 合并同类项,得 25x = 23. 系数化为1,得 x = 典例精析 (1) (2)3x+ 新课探究 情境导入 课堂小结 1.方程-=1,去分母得到了8x-4-3x+3=1,这个变形(  ) A.分母的最小公倍数找错了 B.漏乘了不含分母的项 C.分子中的多项式没有添括号,符号不对 D.正确 B 练一练 新课探究 情境导入 课堂小结 2.解方程, 去分母正确的是( ) A.2(2x+1)-3(5x-3)=1 B.2x+1-5x-3=6 C.2(2x+1)-3(5x-3)=6 D.2x+1-3(5x-3)=6 C 3.若代数式 的值与互为倒数,则x= . 练一练 新课探究 情境导入 课堂小结 1.解方程:(1) 解:去分母,得 6(x+15)=15-10(x-7). 去括号,得 6x+90=15-10x+70. 系数化1,得 x=- . 练习 移项,得 6x+10x=15+70-90. 合并同类项,得 16x=-5. 新课探究 情境导入 课堂小结 解:去分母,得 3(3-x)=2(x+4), 去括号,得 9-3x=2x+8, 移项,合并,得-5x=-1, 系数化为1,得 x= 练习 1.解方程:(2). 新课探究 情境导入 课堂小结 解:去分母(方程两边乘100),得 19x = 21(x – 2). 去括号,得 19x = 21x – 42. 移项,得 19x – 21x = – 42. 合并同类项,得 – 2x = – ... ...

~~ 您好,已阅读到文档的结尾了 ~~