ID: 23958599

21.3 实际问题与一元二次方程 教案 人教版数学九年级上册

日期:2025-10-04 科目:数学 类型:初中教案 查看:47次 大小:73648B 来源:二一课件通
预览图 1/5
21.3,实际问题,一元二次方程,教案,人教,数学
  • cover
初中数学人教版(2012)九年级上册 21.3 实际问题与一元二次方程 课标分析 根据《义务教育数学课程标准(2022年版)》要求,本节内容着重培养学生运用一元二次方程解决实际问题的能力,体现数学建模思想。课标要求通过流感传播、药品成本下降、封面设计等真实情境,帮助学生理解增长率问题()、面积问题()等典型模型,掌握从实际问题抽象出方程()的过程。教学中需强调检验解的合理性(如舍去),比较不同变化率(与对应值)的差异,并鼓励多角度设元简化计算(如探究3的比例设元),发展学生的应用意识和运算能力,体现数学的工具性价值。 教材分析 本节课通过探究传染病传播、药品成本下降率和封面设计三个实际问题,引导学生建立一元二次方程模型解决现实中的数量关系,体现方程思想的应用价值。教学过程以问题驱动,引导学生经历“设未知数—列方程—解方程—检验”的完整建模过程。本节内容承接此前学习的一元二次方程解法,是对方程工具性的深化应用,也为后续学习二次函数的实际应用打下基础。通过分析增长率、几何图形等问题,学生不仅能提升抽象建模能力,还能增强对数学与生活联系的理解,发展逻辑推理和运算求解能力,学会从数量关系角度全面分析变化趋势,为高中阶段进一步学习函数与方程的应用奠定坚实基础。 学情分析 九年级学生已掌握一元一次方程、二元一次方程组的解法及实际应用,具备列方程解决实际问题的基本能力,并学习了一元二次方程的解法如直接开平方法、配方法和公式法,能够进行基本的代数运算与化简,同时此阶段学生逻辑思维逐步成熟,具备一定的抽象概括和分析能力,能理解变量之间的数量关系,但对复杂情境中等量关系的提取仍存在困难,本节课要求学生能从传染问题、成本下降率、图形面积等实际情境中抽象出一元二次方程模型,理解“平均变化率”“面积比例”等实际意义,通过设未知数、列方程、解方程并检验解的合理性,提升建模意识与应用能力,帮助学生体会方程是刻画现实世界数量关系的有效工具,增强数学建模与问题解决能力。 教学目标 能根据实际问题中的数量关系建立一元二次方程模型,掌握利用方程解决传播、增长率等问题的方法,提升数学建模与运算能力,发展符号意识和逻辑推理核心素养。 理解平均变化率与平均变化额的区别,会求解成本下降率等实际问题,增强数据分析观念,提高对百分数变化的理解力和实际比较分析能力。 能结合几何图形特征设未知数并列方程,解决面积比例问题,强化空间观念与代数应用能力,培养几何直观和数学建模素养,提升综合分析与问题解决能力。 重点难点 重点:会列一元二次方程解决传播、增长率及图形面积等实际问题,掌握解题步骤。 难点:分析实际问题中的数量关系,找出等量关系并列出方程,根据实际意义取舍根。 课前任务 1.知识回顾: 上节课学习了一元二次方程的解法,回忆直接开平方法、配方法、公式法、因式分解法的步骤。用配方法解,检验对解法的掌握。 2.预习教材: 阅读教材探究1 - 3,了解用一元二次方程解决传播、增长率、图形面积等实际问题。圈出分析思路、列方程步骤,把设未知数、列方程等关键内容记在预习笔记,标记疑问处。 3.问题思考: 在流感传染问题中,若开始有2人患流感,每轮传染中平均一人传染人,两轮后有多少人患流感?思考如何用一元二次方程表示数量关系,课上交流。 课堂导入 同学们,先来看这样一个有趣场景:在一个热闹的聚会上,最初有1个人会一种独特的舞蹈动作,第一轮他教给了若干人,第二轮这些人又分别教给相同数量的人,最后共有49个人会这个舞蹈动作,那每轮平均1个人教会了几个人呢?这其实和我们今天要学的知识密切相关,像这类实际问题,我们可以通过建立一元二次方程的数学模型来求解。一元二次方程和之前学的 ... ...

~~ 您好,已阅读到文档的结尾了 ~~