
南宁市银海三雅学校2025-2026学秋季学期10月考试高三数学 A.(2,+∞) B.(1,2) c.(1,2 D.[2,+o) 全卷满分150分 考试用时120分钟 7.己知正四棱台上底面边长为1,下底面边长为2,体积为7,则正四棱台的侧棱与底面所成角的正切值为() 注意事项: A.32 B.2 c.22 5 D.32 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 8.已知a>0,b>0,设函数f()=(x-a1og(x+b),若fx)s0,则上+的最小值为() 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后, "a b 再选涂其他答案标号。回答非选择题时,将答案写在答题卡上,写在试卷上无效。 A.8 B.4 C.2 D.1 3.考试结束后,本试卷和答题卡一并交回。 二、多选题(本大题共3小题,共18分。在每小题列出的选项中,选出符合题目的几项) 一、单选题(本大题共8小题,共40分。在每小题列出的选项中,选出符合题目的一项) ,.已知通数/)-sm2x-到引&)=o[2x+周则《) 1.记i为虚数单位,复数z=4+3i,则2=() A.f(x)与g(x)的图象有相同的对称中心 B.∫(x)与g(x)有相同的最小正周期 A.5 B.4.5 C.2.5 D.2 C.(x)与g(x)的图象关于y轴对称 D.f产8)的解集为[+点,否+a](e2) 6 2.已知命题p:x∈R,x+1>1:命题g:3x>0,r<0,则() A.P和9都是真命题 B.P和9都是真命题 0.已知抛物线c:=2xp>0,圆Cx +y2=R2.若C与C交于M,N两点,圆C与x轴的负半 C.P和9都是真命题 D.P和9都是真命题 轴交于点P,则() 3.已知向量ā、6满足1ā上1,5上2,且(4i+i)16,则1a+1为() A.若aPMN为直角三角形,则圆C的面积为p B.R>号 A.5 B.6 C.3 D.√6 C.直线PM与抛物线C相切 D.直线PN与抛物线C有两个交点 4.已知甲、乙两班各50人,下表为某次数学考试的成绩情况: 11.已知函数f(x)=x-ax+2(aeR),则() 分数段 [80,90) [90,100) [100,110) [110,120j) [120,130】 [130,140) [140,150] A.当a<0时,函数f(x)存在极值点B.若函数f(x)在点(1,∫()处的切线方程为直线y=2x,则a=1 甲班人数 3 9 16 10 C.点(0,2)是曲线y=f(x)的对称中心D.当a=1时,函数f(x)有三个零点 乙班人数 5 14 11 8 7 三、填空题(本大题共3小题,共15分) 各分数段成绩视为均匀分布,有以下结论:①甲班平均成绩低于乙班:②甲班成绩的中位数与乙班相同:③甲班 12.已知Sn为等差数列{an}的前n项和,且满足a2=4,S,=22,则S=。 成绩的方差比乙班成绩的方差小.其中正确的序号是() 13.已知tana,tanB是方程x2-3x-3=0的两个实数根,则sin(2a+2B)= A.① B.①③ C.②③ D.①②③ 14.在下图的4×4方格表中选4个方格,要求每行和每列均恰有1个方格被选中,且选中方格中的数字之积为0 5.已知曲线C:x2+y2=4,点A为曲线C上任意一点,过点A作x轴的垂线,垂足为点N,点P为AW上一点, 并能够排成一个4位数,则共有种排法:在符合上述要求的4位数中,最大的数为一 2 且满足AP=2PN,则动点P的轨迹方程为7) 3 x2 y A.4=1 y x y2.x2 C.4+=1 D.4+分=1 0 0 3 6.若函数f(x)=cosx+1与函数g()=log。x(a>0且a*1)的图象至少有五个交点,则实数a的取值范围是 6 () 试卷第1页,共4页 试卷第2页,共4页 ... ...
~~ 您好,已阅读到文档的结尾了 ~~