ID: 24441777

2025-2026学年北师大版八年级数学上册第二次月考测试卷(1-4章)(含答案)

日期:2025-11-20 科目:数学 类型:初中试卷 查看:48次 大小:1184200B 来源:二一课件通
预览图 1/5
2025-2026,学年,北师大,八年级,数学,上册
  • cover
2025-2026学年八年级数学上册第二次月考测试卷(1-4章) 一、选择题(本大题共10小题,每小题3分,满分30分) 1.大约在公元前5世纪,古希腊的毕达哥拉斯学派发现了边长为1的正方形的对角线长不能用有理数表示,为了纪念他们的发现,人们把这些数叫做无理数.下列各数中,属于无理数的是( ) A. B. C. D. 2.下列条件中,不能判断是直角三角形的是( ) A.:::: B.:::: C. D.:::: 3.若正比例函数的图象经过点,则这个图象必经过点( ) A. B. C. D. 4.下列二次根式中,不是最简二次根式的是( ) A. B. C. D. 5.已知点在第二象限,且点P到x轴的距离与到y轴的距离之和为6,则a的值为( ) A. B.1 C. D. 6.已知 =a, =b, 那么( ) A. B. C. D. 7.图1是一个用铁丝围成的长为,宽为的长方形,若将这根铁丝展开重新首尾相接围成图2所示的正方形,则该正方形的面积是( ) A.6 B.8 C.7 D.9 8.若正比例函数经过第二、四象限,则下列关于函数的图象正确的是( ) A.B. C. D. 9.如图,在长方形纸片中,,点为边上的一点,将沿翻折,使点恰好落在边上的点处,则的长为(  ) A.7 B.8 C. D.9 10.甲、乙两车从地出发,匀速驶往地.乙车出发后,甲车才沿相同的路线开始行驶.甲车先到达地并停留分钟后,又以原速按原路线返回,直至与乙车相遇.图中的折线段表示从开始到相遇止,两车之间的距离与甲车行驶的时间的函数关系的图象,则( ) A.甲车速度是 B.A、两地的距离是 C.乙车出发时甲车到达地 D.甲车出发最终与乙车相遇 二、填空题(本大题共6小题,每小题3分,满分18分) 11.若是整数,则满足条件的最小正整数的值为 . 12.有一个数值转换器,流程如图: 当输入的值为81时,输出的值是 . 13.“赵爽弦图”巧妙地利用面积关系证明了勾股定理.图①是由四个全等的直角三角形和一个小正方形排成的一个大正方形,设直角三角形较长直角边长为,较短直角边长为,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,这个风车的外围(实线)周长是 . 14.已知直线向上平移个单位长度后经过点,则m的值为 . 15.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为,,,,,,根据这个规律,第2026个点的坐标为 . 16.在中,,,,点在线段上从点向点移动,同时,点在线段上由点向点移动,当点与点重合时运动停止,已知它们的运动速度相同,连接,,则的最小值为 . 三、解答题(本大题共8小题,满分72分) 17.(6分)计算: (1); (2). 18.(6分)已知的算术平方根是3,b是的立方根,c是的整数部分. (1)求a,b,c的值; (2)求的平方根. 19.(8分)已知一次函数(m为常数). (1)若函数图象经过原点,求m 的值; (2)若函数图象平行于直线,求这个函数图象与 x 轴的交点坐标. 20.(8分)已知点,请分别根据下列条件,求出点的坐标. (1)点在轴上; (2)点的纵坐标比横坐标大; (3)点在过点且与轴平行的直线上. 21.(10分)风筝起源于中国,是古代劳动人民发明的一种通信工具,后来演变为一项民俗娱乐活动.小明买了一个风筝,并进行了试放,为了解决一些问题,他设计了如下的方案:先测得放飞点与风筝的水平距离为;根据手中余线长度,计算出的长度为;牵线放风筝的手到地面的距离为.已知点,在同一平面内. (1)求风筝离地面的垂直高度; (2)在余线仅剩的情况下,若想要风筝沿射线方向再上升,请问能否成功?请运用数学知识说明. 22.(10分)我们知道一个数的倒数是.学习了无理数后,我们要会求一个无理数的倒数. 例: 若,则 若,则 请你根据上述解答过程,解决如下问题: (1)填空:若,则 ... ...

~~ 您好,已阅读到文档的结尾了 ~~