ID: 24865275

1.6.2 正弦定理--2026湘教版高中数学必修第二册章节练(含解析)

日期:2026-02-07 科目:数学 类型:高中试卷 查看:81次 大小:307220B 来源:二一课件通
预览图 1/5
1.6.2,第二,解析,章节,必修,正弦
  • cover
中小学教育资源及组卷应用平台 2026湘教版高中数学必修第二册 1.6.2 正弦定理 基础过关练 题组一 已知两角及任一边解三角形 1.(2025重庆凤鸣山中学月考)在△ABC中,内角A,B,C的对边分别是a,b,c,若A=45°,C=60°,c=,则a=(  ) A.1  B.  C.  D.2 2.在△ABC中,内角A,B,C的对边分别为a,b,c,sin A=,cos B=,a=10,则b=(  ) A.  B.  C.  D. 3.设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sin B=,C=,则b=    . 题组二 已知两边及其中一边的对角解三角形 4.(多选题)(2025甘肃陇南礼县白河中学月考)在△ABC中,内角A,B,C的对边分别为a,b,c,下列判断错误的是(  ) A.B=60°,c=4,b=5,△ABC有两解 B.B=60°,c=4,b=3.9,△ABC有一解 C.B=60°,c=4,b=3,△ABC有一解 D.B=60°,c=4,b=2,△ABC无解 5.(2025甘肃武威六中阶段测试)在△ABC中,内角A,B,C的对边分别为a,b,c,a=2,B=,b=2,则C=(  ) A.  B.  C.或  D.或 6.在△ABC中,若∠B=30°,AB=2,AC=2,则AB边上的高是    . 题组三 利用正弦定理判断三角形的形状 7.(2025上海宝山华曜高级中学月考)在△ABC中,内角A,B,C的对边分别是a,b,c,若A+B=2C,且sin2C=sin Asin B,则△ABC的形状为(  ) A.直角三角形  B.等腰非等边三角形 C.等边三角形  D.钝角三角形 8.在△ABC中,sin A=,则△ABC的形状为    . 题组四 三角形的面积公式及其应用 9.在△ABC中,已知a=2,b=3,∠C=120°,则S△ABC=(  ) A.  B.  C.  D.3 10.(2025甘肃平凉期中)在△ABC中,BC=2,S△ABC=·,则△ABC外接圆的半径为    . 11.若锐角△ABC的面积为10,且AB=5,AC=8,则BC=    . 12.在△ABC中,内角A,B,C的对边分别是a,b,c,已知(a-b)sin A+bsin B=csin C. (1)求角C; (2)若sin Asin B=,c=2,求△ABC的面积. 能力提升练 题组一 利用正弦定理解三角形 1.某次考试后,甲同学只记得:在△ABC中,a,b,c分别为内角A,B,C的对边,a=2,其他条件忘了,最后解得b=2.乙同学给出以下4个条件:①A=,B=;②c=1,cos C=;③c=3,cos B=;④C=,A=.有可能是题目中的已知条件的是(  ) A.①②  B.②③  C.①③  D.③④ 2.(多选题)(2023河北唐山二中期末)在△ABC中,内角A,B,C的对边分别为a,b,c,(a+b)·(sin A-sin B)=(c-b)·sin C,若b+c=4,则a的取值可以是(  ) A.1  B.2  C.3  D.4 3.(2024江苏镇江中学学情检测)在△ABC中,内角A,B,C的对边分别为a,b,c,且bsin∠BAC=acos B,若M是BC边的中点,且AM=AC,则sin∠BAC=    . 题组二 三角形的面积公式及其应用 4.在△ABC中,已知b2-bc-2c2=0,且a=,cos A=,则△ABC的面积等于(  ) A.  B.   C.2  D.3 5.已知△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积为,且2bcos A=2c-a,a+c=4,则△ABC的周长为(  ) A.4+  B.6   C.4+2  D.8 6.(2025甘肃定西临洮文峰中学月考)在△ABC中,内角A,B,C的对边分别为a,b,c,且分别以a,b,c为边长的三个正三角形的面积依次为S1,S2,S3,已知S1+S3-S2=ac. (1)求角B; (2)已知a=4,当取得最小值时,求△ABC内切圆的半径. 题组三 正弦定理的综合应用 7.(2025甘肃定西月考)已知△ABC的内角A,B,C的对边分别为a,b,c,∠BAC为钝角,且c-asin C=0,若∠BAC的平分线交BC于点D,且AD=1,则b+c的最小值为(  ) A.2  B.2  C.4  D.3 8.(多选题)(2025甘肃金昌永昌第一高级中学月考)在△ABC中,内角A,B,C的对边分别为a,b,c.已知(a+b)(sin A+sin B)=csin C+asin B,c=6,则下列结论正确的是(  ) A.C= B.△ABC外接圆的半径为2 C.△ABC的面积的最大值为3 D.若CD为△ABC的中线,则CD≥ 答案与分层梯度式解析 1.6.2 正弦定理 基础过关练 1.B 2.C 4.ABC 5.B 7.C 9.B 1.B 由正弦定理得=,解得a=. 2.C ∵cos B=,且B∈(0,π),∴B=,∴sin B=, 又sin A=,a=1 ... ...

~~ 您好,已阅读到文档的结尾了 ~~