(
课件网) 强化课 课后达标检测 3 4 5 6 7 8 2 1 3 4 5 6 7 8 2 1 (1)求甲小组答对题数的分布列; 3 4 5 6 7 8 2 1 (2)若从甲、乙两个小组中选拔一组代表学校参加全市决赛,请从答对题数的期望和方差角度,分析说明选择哪个小组更好? 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 (2)若已知当前每台设备能正常工作的概率为0.6,根据以往经验可知,若制冰厂由于设备不能正常工作而停业一天,制冰厂将损失1万元,为减少经济损失,有以下两种方案可供选择参考: 方案1:更换3台设备的部分零件,使每台设备能正常工作的概率为0.85,更新费用共为600元. 方案2:对设备进行维护,使每台设备能正常工作的概率为0.75,设备维护总费用为a元.请从期望损失最小的角度判断如何决策? 3 4 5 6 7 8 1 2 解:若不采取措施,设总损失为X0,当前每台设备能正常工作的概率为0.6,故E(X0)=10 000×(1-0.6)3=10 000×0.064=640;设方案1、方案2的总损失分别为X1,X2,采用方案1,更换3台设备的部分零件,使得每台设备能正常工作的概率为0.85,故E(X1)=10 000×(1-0.85)3+600=33.75+600=633.75;采用方案2,对设备进行维护,使得每台设备能正常工作的概率为0.75,故E(X2)=10 000×(1-0.75)3+a=156.25+a,又E(X1)-E(X2)=633.75-156.25-a=477.5-a,且640>633.75,因此,从期望损失最小的角度,当a=477.5时,可以选择方案1或2;当a<477.5时,选择方案2;当a>477.5时,选择方案1. 3 4 5 6 7 8 1 2 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 (2)强基计划规定每名考生只能报考一所试点高校,若以笔试过程中通过科目数的数学期望为依据作决策,当该考生更有希望通过乙大学的笔试时,求m的取值范围. 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4.对乙肝病毒携带者的检测是通过空腹抽血化验乙肝五项的检测完成的.现5人中有1人携带乙肝病毒,需要通过抽血化验来确定病毒携带者,血液检测呈阳性的为病毒携带者,有如下两种化验方案: 方案1:将每个人的血液逐个化验,直到查出病毒携带者为止; 方案2:先取3个人的血液进行混合检测,若呈阳性,对这3个人的血液再逐个检验,直到查出携带者;若不呈阳性,则检测余下的2个人中的1个人的样本. 3 5 6 7 8 1 2 4 (1)若采用方案1,检测到第二人即检测出携带者的概率是多少? 3 5 6 7 8 1 2 4 (2)通过所学知识,分析方案1和方案2,哪个方案更好? 3 5 6 7 8 1 2 4 3 5 6 7 8 1 2 4 3 5 6 7 8 1 2 4 3 5 6 7 8 1 2 4 3 4 6 7 8 1 2 5 (1)求每辆汽车被列为不合格汽车的概率p; 3 4 6 7 8 1 2 5 (2)每辆汽车不需要重新检测的费用为60元,需要重新检测的前后两轮检测的总费用为100元,求每辆汽车需要检测的费用X的分布列及数学期望; 3 4 6 7 8 1 2 5 (3)公司对本次质量检测的预算支出是4万元,若300辆汽车全部参与质量检测,且实际费用不超过预算,则依原方案进行检测,否则改进检测方案,试问检测方案是否需改进? 3 4 6 7 8 1 2 5 6.某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元,在机器使用期间,如果备件不足再购买,则每个500元,现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得到其频数分布图(如图所示).若将这100台机器在三年内更换的易损零件数的频率视为1台机器在三年内更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数. 3 4 5 7 8 1 2 6 (1)求X的分布列; 解:由柱形图并以频率代替概率可得,1台机器在三年内需更换的易损零件 ... ...