ID: 25099195

《创新方案》7.1.1 第1课时 条件概率的概念与计算 课件 高中数学选修三(人教A版)同步讲练测

日期:2026-02-08 科目:数学 类型:高中课件 查看:72次 大小:1480126B 来源:二一课件通
预览图 1/12
高中,讲练,同步,人教,选修,数学
  • cover
(课件网) 第七章 随机变量及其分布 7.1 条件概率与全概率公式 7.1.1 条件概率 第1课时 条件概率的概念与计算 1.结合古典概型,了解条件概率的概念,能计算简单随机事件的条件概率. 2.了解条件概率与独立性的关系,会用缩小样本空间法计算条件概率. 学 习 目 标 新知学习 探究 PART 01 第一部分 同学们,我们已经知道:抛掷一枚质地均匀的硬币两次,其试验结果的样本点组成样本空间Ω={正正,正反,反正,反反}. 思考1 两次都是正面向上的事件记为B,P(B)是多少? 思考2 在第一次出现正面向上的条件下,第二次出现正面向上的概率是多少? 思考3 以上两个事件的概率为什么不一样? 提示:因为在事件A发生的条件下,事件B发生的概率相当于以A为样本空间积事件AB发生的概率,两者的样本空间发生了变化,所以其概率是不一样的. 一 条件概率的概念 一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=_____为在事件A发生的条件下,事件B发生的条件概率,简称条件概率. 【即时练】 1.判断正误,正确的打“√”,错误的打“×”. (1)若事件A,B互斥,则P(B|A)=1.(  ) (2)在事件A发生的条件下,事件B发生的概率,等于A,B同时发生的概率.(  ) (3)P(A|B)=P(B|A).(  ) ×  ×  ×  2.判断下列哪些是条件概率? (1)某校高中三个年级各派一名男生和一名女生参加市里的中学生运动会,每人参加一个不同的项目,已知一名女生获得冠军,求高三的女生获得冠军的概率; 解:由于高三的女生获得冠军的概率,是在一名女生获得冠军的条件下求的概率,所以所求概率是条件概率. (2)掷一枚质地均匀的骰子,求掷出的点数为3的概率; 解:掷一枚质地均匀的骰子会出现1,2,3,4,5,6这6个不同结果,求掷出的点数为3的概率是古典概型,所以掷出的点数为3的概率不是条件概率. (3)在一副扑克的52张(去掉两张王牌后)中任取1张,已知在抽到方块的条件下,求抽到的是方块9的概率. 解:由于求抽到方块9的概率,是在抽到方块的条件下求出的概率,所以求抽到的是方块9的概率是条件概率. 条件概率概念的理解 (1)P(B|A)与P(B):在事件A发生的前提下,事件B发生的概率不一定是P(B),即P(B|A)与P(B)不一定相等. (2)P(B|A)与P(A|B)意义不同,由条件概率的定义可知,P(B|A)表示在事件A发生的条件下,事件B发生的概率;而P(A|B)表示在事件B发生的条件下,事件A发生的概率. (3)判断是不是条件概率主要看一个事件的发生是否是在另一个事件发生的条件下进行的. 二 利用定义求条件概率    (对接教材例1)现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求: (1)第1次抽到舞蹈节目的概率; (2)第1次和第2次都抽到舞蹈节目的概率; (3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率. 【变式探究】 (设问变式)本例条件不变,试求在第1次抽到舞蹈节目的条件下,第2次抽到语言类节目的概率. √ [跟踪训练1] (1)已知某班级中,喜欢文学阅读的学生占75%,喜欢文学阅读而且喜欢科普阅读的学生占30%.若从这个班级的学生中任意抽取一人,则在抽到的学生喜欢文学阅读的条件下,该学生也喜欢科普阅读的概率为(  ) A.22.5% B.30% C.40% D.75% (2)抛掷红、蓝两枚骰子,记事件A为“蓝色骰子的点数为4或6”,事件B 为“两枚骰子的点数之和大于8”,则P(B|A)=_____;P(A|B)= _____. 三 缩小样本空间求条件概率    某地开展党史知识竞赛活动,以党支部为单位参加比赛,某党支部在5道党史题中(包含3道选择题和2道填空题)不放回地依次随机抽取2道题作答,设事件A 为“第1次抽到选择题”,事件B 为“第2次抽到选择题”, ... ...

~~ 您好,已阅读到文档的结尾了 ~~