ID: 25100603

《创新课堂》7.2.1 三角函数的定义 课件 高中数学必修三(人教B版)同步讲练测

日期:2026-02-08 科目:数学 类型:高中课件 查看:71次 大小:814743B 来源:二一课件通
预览图 1/12
讲练,同步,人教,必修,创新课堂,数学
  • cover
(课件网) 7.2 任意角的三角函数 7.2.1 三角函数的定义 新知学习 探究 PART 01 第一部分 思考1 定义中的三个三角函数,对于同样大的一个角来说,如果三角形的大小改变(相似变化),其三角函数值是否改变? 提示:不变. 思考2 如图,如果一个锐角α的终边在第一象限,终边上有一点P(x,y),且x2+y2=1,根据初中所学在直角三角形中正弦、余弦、正切的定义,你能否用点P的坐标表示sin α,cos α,tan α?这一结论能否推广到α是任意角时的情形呢? 三角函数 √ 【变式探究】 1.(条件变式)将本例中的“已知角α的终边经过点P(4,-3)”变为“设函数f(x)=ax+1+1(a>0且a≠1)的图象过定点P,且点P在角α的终边上”,求cos α+sin α的值. 2.(综合变式)将本例中“点P(4,-3)”变为“点P(4a,-3a)(a≠0)” 求sin θ,cos θ,tan θ的值. √ (2)若函数f(x)=loga(x-2)+1(a>0,且a≠1)的图象经过定点A,若点A在角α的终边OP上(O是坐标原点),则tan α=_____. 一二 三四 一四 二三 一三 二四  (对接教材例4、例5)(1)设角α的始边为x轴的正半轴,则“sin α>0”是“角α的终边在第二象限”的(  ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 √ (2)tan 125°sin 223°_____0.(填“>”或“<”) 【解析】 因为125°是第二象限角,所以tan 125°<0;223°为第三象限角,所以sin 223°<0, 所以tan 125°sin 223°>0. > 判断三角函数值符号的两个步骤 (1)定象限:确定角α所在的象限; (2)定符号:利用三角函数值的符号变化规律,即“一全正,二正弦,三正切,四余弦”来判断.  √ (2)已知tan x<0且cos x<0,则角x的终边在第_____象限. 解析:由tan x<0,得角x的终边在第二、四象限,因为 cos x<0,所以角x的终边在第二、三象限或x轴负半轴上,由于上述条件要同时成立,所以角x的终边在第二象限. 二 √ (2)若角α的终边在直线3x+y=0上,则cos α=_____. (1)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论. (2)由于角的终边是一条射线,则终边在已知直线上的角包含两类角,求解时应注意分类处理.  √ 课堂巩固 自测 PART 02 第二部分 √ 2.(多选)设α=210°+k·360°(k∈Z),则下列判断正确的是(  ) A.sin α>0 B.tan α>0 C.cos α<0 D.sin αcos α<0 解析:由题易知α是第三象限角,所以sin α<0,cos α<0,tan α>0, sin αcos α>0.故选BC. √ √ 1 4.(教材P17T1改编)已知角α终边上一点P的坐标是(5a,12a)(a<0),求sin α,cos α,tan α的值.

~~ 您好,已阅读到文档的结尾了 ~~