ID: 9406006

第12讲 平面向量及其加减运算-2020-2021学年沪教版(上海)八年级数学下册同步讲义(学生版+教师版)

日期:2025-10-16 科目:数学 类型:初中学案 查看:63次 大小:870041B 来源:二一课件通
预览图 0
上海,学生,讲义,同步,下册,数学
    第12讲 平面向量及其加减运算 【学习目标】 1.了解向量的实际背景,理解平面向量和向量相等的含义. 2.理解向量的几何表示,掌握向量加、减运算,并理解其几何意义. 3.理解两个向量共线的含义. 【要点梳理】 要点一、平面向量 1.有向线段:规定了方向的线段叫做有向线段. 有向线段的方向是从一点到另一点的指向,这时线段的两个端点有顺序,前一点叫做起点,另一点叫做终点,画图时在终点处画上箭头表示它的方向. 要点诠释: (1)“有向线段AB”符号标记为,且表示点B相对于点A的位置差别. (2)用两个字母标记有向线段时,起点字母必须写在终点字母的前面. 2.平面向量的定义及表示 (1)向量: 既有大小又有方向的量叫做向量.其中向量的大小叫做向量的模(或向量的长度). 要点诠释: ①向量的两要素:向量的大小、向量的方向. ②数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;而向量有方向,有大小,具有双重性,不能比较大小. ③向量与有向线段的区别: (a)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,这两个向量就是相等的向量; (b)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段. (2)向量的表示方法: ①小写英文字母表示法: 如等. ②几何表示法:用一条有向线段表示向量,如等. (3)向量的分类: 固定向量:有大小、方向、作用点的向量; 自由向量:只有大小、方向,没有作用点的向量. 要点诠释:我们学习的主要是自由向量. 3. 特殊的向量 零向量:长度为零的向量叫零向量. 单位向量:长度等于1个单位的向量. 相等向量:长度相等且方向相同的向量. 互为相反向量: 长度相等且方向相反的向量. 平行向量:方向相同或相反的非零向量,叫平行向量(平行向量又称为共线向量). 规定:与任一向量共线. 要点诠释: (1)零向量的方向是任意的,注意与0的含义与书写的不同. (2)平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. (3)零向量、单位向量的定义都只是限制了大小. 要点二、平面向量的加法运算 1. 定义:求两个向量的和向量的运算叫做向量的加法. 2. 运算法则: (1)三角形法则:一般来说,求不平行的两个向量的和向量时,只要把第二个向量与第一个向量首尾相接,那么以第一个向量的起点为起点、第二个向量的终点为终点的向量就是和向量.这样的规定叫做向量的加法的三角形法则.如图: (2)多边形法则:一般地,几个向量相加,可把这几个向量顺次首尾相接,那么它们的和向量是以第一个向量的起点为起点、最后一个向量的终点为终点的向量,这样的规定叫做几个向量相加的多边形法则. (3)平行四边形法则:如果是两个不平行的向量,那么求它们和向量时,可以在平面内任取一点为公共起点,作两个向量分别与相等;再以这两个向量为邻边作平行四边形;然后以所取的公共起点为起点,作这个平行四边形的对角线向量,则这一对角线向量就是和的向量.如图:                  要点诠释: 1.两个向量的和是一个向量,规定. 2.可用平行四边形或三角形法则进行运算,但要注意向量的起点与终点. 3.“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加,即得到几个向量相加的多边形法则. 4..探讨该式中等号成立的条件,可以解决许多相关的问题. 3.运算律: (1)交换律:; (2)结合律: 要点三、向量的减法运算 1.定义:已知两个向量的和及其中一个向量,求另一个向量的运算叫做向量的减法. 2.运算法则: 在平面内任取一点,以这点为公共起点作出这两个向量,那么它们的差向量是以减向量的终点为起点、被减向量的 ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~